Design and Optimization of the Input Modules of
a DPA Toolbox

1

)

A. Fuentes Rodriguez,!, L. Herndndez Encinas
A. Martin Mufioz! and B. Alarcos Alcazar?

L Instituto de Tecnologias Fisicas y de la Informacion (ITEFI)
Consejo Superior de Investigaciones Cientificas (CSIC)
C/ Serrano 144, 28006-Madrid, Spain
{alberto.fuentes, luis, agustin}@iec.csic.es
2 Departamento de Automdtica, Escuela Politécnica Superior
Universidad de Alcald (UAH)
Carretera A2, km 32, 28871-Alcald de Henares, Spain
bernardo.alarcos@uah.es
Contact author: Agustin Martin Mufioz

Abstract. Theoretical security of cryptographic systems does not guar-
antee their security in practice when those systems are implemented in
physical devices. The aim of this work is to present the design and op-
timization of the input modules of a toolbox to carry out differential
power analysis attacks against the physical implementation of a given
cryptosystem. Text and Key modules allow to input the plaintext or ci-
phertext to the targeted cryptographic algorithm and the corresponding
hypothetical values about the used key, respectively. Once configured,
the toolbox Power Traces module controls a digital oscilloscope which
acquires the power traces during the operation of the device and auto-
matically performs the necessary traces alignment. It can also perform
statistical operations with the stored values representing the acquired
traces. An analysis about different object oriented trace representation
options to implement the toolbox is performed and results are presented.

1 Introduction

During the last years the use of different electronic devices which implement
cryptographic features to perform different operations (personal identification,
payment cards, etc.) has increased worldwide. Many of those uses are relevant
enough to require important security guarantees.

It is known that symmetric cryptography uses a unique key (secret) to en-
crypt and decrypt messages between two parties who want to exchange confiden-
tial information, but one of its main problems is to determine what secret key
will be used. This problem is solved by using Key Agreement Protocols (KAP).
Nowadays, Quantum Key Distribution (QKD) uses the properties of quantum
mechanics to guarantee secure communication for KAP. The bits of the key are
individually encoded in states of a quantum system (polarisation states of sin-
gle photons, for instance), and then distributed between the legitimate parties.

Any eavesdropper’s attempt to intercept bits of the key implies that some mea-
surements will be performed on the quantum system, unavoidably changing its
quantum state and therefore introducing errors which reveal her presence. QKD
systems are suitable for optical links [1], [2], whereas for wireless radio communi-
cation channels, secure KAP can be achieved by modulation of the information,
at physical layer, by the thermal noise experienced by the link between two
terminals [3].

On the contrary, asymmetric cryptography does not need key agreement
protocols as it uses a pair of keys (public/private) to encrypt/decrypt messages.
Until the publication in 1996 of the paper by Kocher [4], the cryptographic
community considered that the security of an asymmetric cryptosystem lied in
the strength of the mathematical problem in which it was based on. For instance,
the security of the RSA algorithm is based on the difficulty of factorizing the
RSA composite modulo, which can be achieved by using large prime numbers.

With the quick and widespread development of portable cryptographic to-
kens, typically smart cards, which usually have limited memory and compu-
tational capabilities, several cryptosystems and lightweight protocols [5] have
been developed. Elliptic curve cryptosystems, for instance, allow the use of much
shorter keys to achieve a level of security similar to that of RSA [6].

1.1 General Concepts about Attacks to Physical Devices

Kocher’s work demonstrated that it was possible to break the security of em-
bedded cryptographic systems, even easily, by means of an attack which, instead
of trying to solve the underlying mathematical problem, took advantage of the
information which could be obtained by the fact that the cryptosystem was phys-
ically implemented in a device. Kocher showed that useful information to find
fixed Diffie-Hellman exponents, factor RSA keys, and break other cryptosystems
could be obtained by measuring the time required to perform private key oper-
ations. His work pointed out that timing attacks are a highly meaningful tool
for vulnerability analysis. The continuous development of device-implemented
cryptography (see, for instance, [7]) is accompanied by an increasing number of
physical attacks [8-10].

The information could also be leaked by other side channels as could be
the power consumption —thus enabling Simple Power Analysis (SPA) or Dif-
ferential Power Analysis (DPA) attacks [11-13]—, and the electromagnetic field
radiated by the device during its operation —enabling Simple ElectroMagnetic
Analysis (SEMA) or Differential ElectroMagnetic Analysis (DEMA) [14-16]—.
The hypothesis on which side channel attacks are based is that the magnitudes
of these characteristics directly depend on the instructions, mathematical oper-
ations, and data used by the processor during the cryptographic operations. In
this way, the cryptographic key used can be deduced by an adequate analysis
of the information obtained by measuring the leakage by these side channels.
The procedures to develop both a power analysis and a electromagnetic anal-
ysis attack are quite the same; the only difference is the measured magnitude.
The reason is that the electromagnetic field radiated by the chip is caused by

the currents circulating within the chip circuits. These currents are especially
significant when transistors switch their state [15].

The mentioned attacks, which only capture the information leaked from the
device without altering it, are known as passive (non-invasive) attacks. Moreover,
active attacks (invasive or semi-invasive) have also been developed to tamper
with the correct behaviour of the device in order to obtain secret information;
some of these fault attacks can alter or even destroy the device [17], [18].

In physical attacks it is assumed, as in the case of classical cryptanalysis,
that Kerckhoffs’ [19] principle is verified, that is, the potential eavesdropper has
access to the device and knows the cryptographic algorithm that is running in
the chip, so as the details of the implementation; the only thing she doesn’t
know is the key. Furthermore, it is supposed that she can operate the device the
number of times she needs, choosing the input values, and obviously, that she
can interact with the device or measure certain parameters in its surroundings.

1.2 Example of a SPA Attack

One of the most widely used technique among all side channel attacks is power
analysis which employs power consumption traces measured during the opera-
tion of the cryptographic device. These traces are captured by using a digital
oscilloscope that measures the voltage across the resistor connected in serial to
the power source terminal of the device which communicate with the chip.

By means of SPA attacks, the attacker, having a detailed knowledge of the
implemented algorithm, succeeds in obtaining the key after capturing a single
trace, or a set of a few traces. For example, let us consider the RSA algorithm
which executes a modular exponentiation, y = x* mod n, where the binary
representation of the key is k = (k,_1 ... ko)2. The square and multiply algorithm
for the modular exponentiation, processing the bits from left to right, is:

1.y« 1.
2. For ¢ from (r — 1) to 0 do:

(a) y < y?> mod n.

(b) If (k; = 1) then y < (y-x) mod n.
3. Return (y).

This way, if k = 23 = (10111)s, then z*¥ = 223 = (((2?)22)22)%2. As can
be observed, when the algorithm processes a ‘0’ bit, the multiplication included
in step 2(b) is not executed and, thus, the power consumption will be lower
than what would be needed for a ‘1’ bit. If an attacker knows that a smart card
is executing a RSA which implements the above algorithm and, measuring the
consumption, she captures the SPA trace represented in Figure 1, she would
easily identify the key k = 653642 = (10011111100101001010)5.

Without the adequate countermeasures, this kind of attack is very effective
and requires a small amount of resources. If the relationship between the con-
sumed power and the cryptographic key is not clear, the captured signal uses to
have a very low level as compared to noise, and SPA attacks are not feasible. In

40

@
S

Current (mA)
S

0 15 3 45 6
Time (ms)

Fig. 1. Power consumption during the execution of a RSA with a key k = 653642.

those cases, statistical techniques are used in order to perform a DPA attack,
requiring a huge amount of data to be captured and processed.

In this work the design and optimization of the input modules of a software
tool to carry out DPA attacks is presented. The initial stages of the toolbox
development, describing its storage and alignment capabilities were presented
in [20]. This new toolbox is an open source project intended to provide a baseline
from where new techniques or approaches could be shared and reviewed. It is
oriented to be clear, user-friendly, and easy to understand, in order to easily
choose between different known techniques and options without the need of
knowing their internal characteristics. Another key feature is that it is modular
because, being DPA attacks a very active research field with different aspects
(i.e., alignment techniques, statistical analysis, etc.), the toolbox should provide
the capability of integrating new findings in an easy way. It should also be as
efficient as possible so as to minimize the resources needed to carry out the attack
(main memory, cache usage, multithreading programming, etc.), being open to
new optimization techniques.

In the following section a description of the general procedure to develop a
DPA attack is outlined. In section 3, the toolbox Text, Key and Power Traces
input modules are described. Different implementation issues to optimize the
toolbox are analyzed in section 4. Finally, results of a performance analysis and
conclusions are presented in sections 5 and 6, respectively.

2 Description of a DPA Attack

In order to obtain a secret key, an eavesdropper must have the targeting device
and know or guess the model of power consumption (the better the guess, the
better the result); it is also assumed that she knows the type of cryptographic
algorithms which is being executed, the plaintexts or the ciphertexts, and can
measure all the power traces she needs.

To carry out a DPA attack, a large amount of plaintext are ciphered and
the corresponding power consumption traces are measured by means of a dig-
ital oscilloscope. Those traces are later on, stored and syncronized, that is, an
alignment procedure is made with the captured traces. The goal is to guaran-
tee that a correct comparison between the traces is performed (the values of all
traces must be compared in their correct time instant, to ensure that they are
caused by the same operation) all along the execution of the algorithm [21]. The
procedure for a DPA attack is:

1. Choose an intermediate result of the executed algorithm from a function
that uses as inputs part of the cryptographic key and known data, usually
the plaintext or ciphertext.

2. Create a power profile, measuring the power consumption for D encryp-
tion/decription operations with different plaintexts/ciphertexts. For each run
the power trace is created with T samples, obtaining a matrix Ppx k.

3. Calculate a hypothetical intermediate value for every possible choice of the
key k. If K is the total number of possible choices for k, the result of this
step is a matrix Vpx k.

4. Map the hypothetical intermediate values V' to a matrix H of hypothetical
power consumption values which are simulated according to a certain power
model, commonly the Hamming-distance or the Hamming-weight model [21,
§3.3]. These calculations result in a matrix Hpyxx which contains these hy-
pothetical power consumption values.

5. Compare the hypothetical power consumption values with the power traces
at each position. This results a matrix Rx «7 containing the results of the
comparison. Different algorithms are used for the comparison (difference or
distance of means, generalized maximum-likelihood testing, etc.).

If the statistical method uses a correlation coefficient, the attack is known as
Correlation Power Analysis (CPA). This kind of attack was first introduced in
[22]. Compared with DPA, CPA requires less number of power traces to launch a
successful attack because in DPA all unpredicted data bits contribute to generate
a worse Signal to Noise Ratio (SNR). The SNR of DPA could be improved if
multiple bits are used in prediction [23].

Figure 2 shows a power trace measured with our PicoScope 5204 digital
oscilloscope with a Pintek DP-30HS high-sensitivity differential probe during the
execution of a DES in a NXP JCOP41/72k smart card. Thousands of similar
traces are captured with our tool and then processed to carry out a DPA attack.

DPA attacks can be generalized to Higher-Order Differential Power Analysis
(HODPA), where several points in a power trace are used instead of a single one.
Usually, a n**-order DPA attack uses n samples simultaneously, corresponding to
n different intermediate values in the same captured trace. HODPA are specially
useful to break implementations which include countermeasures [24-26].

140 T

120

-
=]
o

3
[
§ 80
>
60
40

Zl]0 1e+07 2e+07 3e+07 4e+07 5e+07 6e+07
Time (ns)

Fig. 2. Power consumption captured during the execution of DES.

3 Toolbox input modules

According to points 1 and 2 of the DPA attack flow described in §2, three main
blocks constitute the input to the kernel of a DPA software tool: a set of known
data (plaintext or ciphertext depending upon the chosen intermediate result), a
set of hypothetical values which constitute part of the key, and a set of power
consumption traces measured during the encryption/decryption operation of the
cryptographic algorithm where the set of plaintexts/ciphertexts are involved.
The main classes created for each of these modules are described next.

3.1 Text block

Classes CInputData and CInputDataSet have been created to model the
input plaintexts or ciphertexts. Both classes contain methods to add, modify
and read data. ClnputDataSet allows users to choose between adding values
specified by themselves or generated at random. No inheritance relationship
exists between the text input data.

3.2 Key hypotheses block

This module has two classes to model the key hypotheses. CKeyHypothesis
contains the hypothetical values of the key (or part of the key). As in the case
of CInputData, a method to set the hypothetical key size is also called.
CKeyHypothesisSet, whose inheritance diagram is shown in Figure 3, is
used as an abstraction to generate the key space. It is implemented as CKey-
Hypothesis8Set, CKeyHypothesisAllValues8Set, CKeyHypothesis16Set, and CK-
eyHypothesisAllValues16Set, depending on the size of the key (8 or 16 bit, respec-
tively). In CKeyHypothesisAllValues8Set and CKeyHypothesisAllValues16Set the

set of keys is filled in, at object initialization, with all possible 8 and 16 bit val-
ues, respectively. Although it could also be possible to implement a class for a
32-bit key, this option has been discarded because it requires dealing with 4-10°
elements of 32 bits, which implies operating with 128 GB in memory. The gen-
eration of the whole key space takes 0.000173 s for 8-bit keys and 0.019521 s for
16-bit keys.

CKeyHypothesis16Set I

CKeyHypothesis8Set I

CKeyHypothesisSet

1 CKeyHypothesisAllValues16Set I

| CKeyHypothesisllValuessset |

Fig. 3. Inheritance diagram of the CKeyHypothesisSet class.

3.3 Power trace block

This module is in charge of managing the acquisition, storage and alignment of
the power consumption traces. It includes the following trace-related classes:

CTrace is used as an abstraction to caller objects of the resolution of the
trace. It is implemented as CTrace8, CTracel6, or CTrace32, depending on res-
olution of the values (8, 16, or 32 bits, respectively).

CStatTrace represents statistical data obtained from several traces (i.e.,
mean, variance).

CTimeSlice: A time slice contains the values taken at a time point from
several traces. This class is used as an abstraction to caller objects of the res-
olution of the time slice. It is implemented as CTimeSlice8, CTimeSlicel6, or
CTimeSlice32, depending on resolution of the values.

CTraceSet contains sets of traces of the same device taken with the same
timing, in order to do statistical analysis. Trace Sets can be in two states: Sta-
tistical Mode and Alignment Mode. Method availability or performance may
depend on the mode. It has a subclass, CPreProcTraceSet, with the added prop-
erty that the traces can be preprocessed: aligned, compressed, etc. Traces align-
ment through least square matching pattern technique is made by the subclass
CAlignMatchSqrTraceSet —the displacement between the pattern (first trace of
the set) and the power trace is calculated—. For traces alignment through in-
tegration, subclass CAlignSum TraceSet is used —the displacement between the
pattern (first trace of the set) and the power trace is calculated—.

A schematic diagram of these classes is shown in Figure 4, where two interface
classes, CFileStorage (which specifies that the subclasses can be stored in a

file) and CGraphicable (which specifies that its subclasses can be printed out if
gnuplot is installed), are also included.

CTimeSlice16
CTimeSlice32

CTimeSlice8

CTrace32

CTrace8

CPreProcTraceSet

CTimeSlice

CFileStorage

CGraphicable CStatTrace

CTraceSet CAlignMatchSqrTraceSet |

CAlignSumTraceSet

Fig. 4. Hierarchy of classes to manage trace acquisition and alignment.

Depending on the used class, the type of graphical representation provided
by CGraphicable will be different. As an example, Figure 5(a) shows a plot of
1000 voltage samples —measured by the probe with a sampling rate of 2 ns—, as
provided by Ctrace, while Figure 5(b) represents the corresponding histogram,
number of occurrences of different voltage values in a given time.

250 4000

3500

200

3000

2500

2000

voltage [mv]

1500

Frequency of occurrence

1000

50 0
0 02 04 06 08 1 12 14 16 18 2 54 56 58 60 62 64 66 68

time [us] voltage [mv]

(@) (b)

Fig. 5. (a) Power consumption provided by Ctrace. (b) Histogram of voltage values in
the first instant as provided by CTimeSlice.

AUSTRIACARD SoBaTED

‘\\S

Fig. 6. View of the experimental setup.

Each trace is captured by means of a digital PicoScope 5204 oscilloscope and
a Pintek DP-30HS high sensitivity differential probe and is stored as a vector
of values for further processing. A picture of the experimental setup showing
the card, the reader and the probe ends is shown in Figure 6. The main pa-
rameters that have to be properly adjusted when storing the traces are vertical
sensitivity, sampling rate, resolution, memory size and DC offset [27]. The size
of the elements of the vector depends on the resolution of the voltage values
provided by the oscilloscope. Once the capture of the power values is done, data
are transferred from the oscilloscope memory to the PC memory. If streaming
mode is used, data are transferred during the capture process, although this is
only possible with low sampling rates.

Being the data corresponding to the traces the biggest amount of information
that the toolbox has to deal with, all the rank of resolutions that the architecture
can manage (8, 16 or 32 bits) must be provided. In this way, the toolbox would
be as versatile as possible and it would minimize the memory consumption and
cache usage (the internal representation of traces is a key factor determining the
performance).

As an example, for a sampling rate of 4 ns, a computation process that
requires 25 ms by the crypto device would require a trace with 25-1072/(4-10°) =
62.5 - 10° sampled values. The memory needed to store 1000 traces in an 8-bit
architecture is 5.96 MB. The noisiest the signal is, the higher the number of traces
that must be measured. Thus, the internal trace representation can determine if
a computer can be used to carry out an attack or not.

In order to represent traces as objects, three possible options have been
analyzed, either using C++ templates, object oriented inheritance, or float values.

1. C++ templates: A class trace has been created that operates with a
generic type which specifies the resolution (i.e., uint8_t for 8 bits). As the
unique abstraction required for trace representation is the resolution of the
elements stored, it fits with the C+-+ template feature.

10

2. Object oriented inheritance: Inheritance in object oriented programming
is one of the main building blocks together with encapsulation, polymor-
phism and abstraction. Inheritance provides an Is-a relationship between
objects. From this point of view, an “abstract” class CTrace has been cre-
ated. This class has a derived class for each resolution option. Using this
abstraction mechanism, other classes can use C'Trace class without the need
of knowing which resolution is being used.

3. Float representation of values: Keeping the values as float does not
require abstraction between the different resolutions. Thus, values are repre-
sented as 32-bit floats and the internal values represent the voltage, that is,
conversion from raw values to voltage values is done only once, while traces
are being captured.

In next section we analize the code optimization of the different mentioned
options, although we could tackle others as, for example, plain C by means of
Abstract Data Types based on opaque pointers. However, since the library has
been designed according to code reutilization principles so further methods and
classes could be incorporated upon the proposed programming interface, options
that do not provide this feature are not evaluated.

4 Optimization analysis

This section discusses the different implementation options to optimize the tool-
box. Using C++ templates, type abstraction is resolved at compile time. Thus,
the compilation time is longer but there is not need of solving polymorphism at
execution time that could impact the performance, but as it is one of the toolbox
objectives this option must be taken into account. Also templates are checked
at compile time for type consistency, so it avoids type errors at execution time.
Template definitions cannot be separated into a header (.h) and source file
(.cpp) because templates are instantiated at compile time, not at link time. Thus,
declaration and implementation must be located in the same file. The solution to
this problem is the explicit instantiation. When templates are explicitly instan-
tiated the programmer defines which possible values the type can acquire. With
this approach the compiler will create object code for each specified value and
neither compiler nor linker errors will appear. Although currently C++ allows
implicit template instantiation to be defined in a separated source file by using
the export keyword, this feature is not allowed by most C+-+ compilers.
Another important aspect which must be considered about using C++ tem-
plates is that the trace class is used to form other classes in the toolbox (i.e.,
CTraceSet). These must be able to deal with all possible type values that the
traces may acquire, but the only way to do that is to define such classes as tem-
plates as well. This imply that the templates will extend to many parts of the
toolbox source code, which would become less clear. As the toolbox is expected
to be used and modified by other developers, clearness of source code is essential.
Using inheritance, resolution operations are done at CTrace class level, so
other classes can be build without taking resolution into account. In this case,

11

the code is clear and easy to understand, an important advantage with respect
to templates. However, abstract methods are solved at execution time. Thus,
part of the processing time will be spent in the dynamic dispatch.

The option of creating an abstract class representing an unique data element
(voltage value) has also been evaluated. In case of using object inheritance, an
operation that affects the data elements of a trace requires to call an abstract
method for each data element instead of just calling the abstract method of the
CTrace class. As each call to an abstract method may be solved dynamically, it
requires much more computation than in the case of using templates.

As mentioned above, keeping the values as float does not require abstraction
between the different resolutions, simplifying source code. In addition, as values
stored are the voltage values themselves, conversion from raw to voltage values is
done once, while traces are being captured, requiring less computational power
than the previously analyzed options. However, the size of internal values is
32 bits. Usually, oscilloscopes offer a maximum resolution of 12 or 16 bits. In
those cases the memory and disk spent to store trace information is at least
twice the required. Also, storing values with a 32-bit size has a computational
disadvantage. Most toolbox operations access trace values sequentially. So, less
elements will be found at cache memory and the probability of finding the next
value in cache is low. Each time that a value is not found in cache (cache miss),
it has to be fetched from its original storage location (RAM memory) which
is comparatively slower. So, cache miss delays may counteract the benefits of
computing only once the conversion from raw to voltage values.

In Table 1 a summary of the advantages and disadvantages of each object
oriented representation option is given.

Table 1. Comparison between the object oriented representation options.

Advantages Disadvantages
Only one class Templates extend over the toolbox
Templates Resolved at compile time Cannot be easily separated in header
Cache optimization and source
Abstraction at CTrace level Solved at execution time
Well known mechanism Dyamic dispatch

Inheritance Easier to understand
Less memory and disk required
Cache optimization

Conversion is done once Each value requires 32 bits
Float No abstraction is required Less elements at cache memory
Source code simplified

12

5 Performance analysis

Performance has been analyzed by means of a benchmark, Dyn/Stat, which has
been designed to compare the computational time spent in executing the same
operations with the different approaches used to internally represent trace values.
The aim of Dyn/Stat is to check the performance differences between dynamic
binding (binding is solved at execution time) and static binding (binding is solved
at compile time). Dynamic binding is done with object oriented inheritance with
virtual classes (Object oriented inheritance approach), while static binding is
done when virtual classes are not used (C++ templates approach).

Traces are vectors, so the benchmark checks the performance of storing val-
ues in vectors and executing vectorial operations. It has been run in a Intel(R)
Core(TM)2 Quad CPU Q9550 @ 2.83GHz with GCC compiler version 4.4.3.
Dyn/Stat benchmark outputs the time of computation for assigning values to
two vectors for both approaches with different vector lengths and compilation
parameters. Results presented in Table 2 show that, when -00 minimum opti-
mization is used, compilation time is reduced. In this case, the time penalty for
dynamic binding represents a 6.60% in case of a vector with 107 elements and
6.46% for 10° elements. Thus, it can be assumed that the number of elements
does not impact in the dynamic binding time penalty. For -03 maximum op-
timization, all compiler optimizations are used. One of these optimizations is
-fdevirtualize that allows the compiler to convert the dynamic binding into
static binding. Devirtualization can be done when the subclass that implements
the virtual method can be defined at compilation time [28]. Thus, the virtual
(Dynamic in Table 2) solution is 12.67% faster in case of a vector with 107
elements and 11.01% for 10° elements.

Table 2. Dyn/Stat benchmark output.

Time (s)

-00 optimization = -03 optimization

Length (elements) Static Dynamic Static Dynamic
10000 000 0.177548 0.189265 0.135924 0.120644
100 000 000 1.776202 1.891002 1.333785 1.201456

It can be pointed out that the system works properly if the number of data
to process is increased, i.e., processing time grows linearly. Moreover, when the
minimum optimization is used (-00), the virtual solution has a time penalty
of about 6.5%, whereas if maximum optimization (-03) is considered, the time
spent in computations is about 11-12.7% shorter with respect to the template-
based solution, for vectors of length 107-10°.

13

6 Conclusions

The design and optimization of the input modules of a multi-platform object-
oriented toolbox to carry out DPA attacks is presented.

It has been pointed out that, globally, developing the code by using inheri-
tance is better than doing it by using templates. Results show that the design
is computationally efficient and has also optimized storage capabilities. In ad-
dition, the object-oriented modular design allows new algorithms to be easily
implemented.

Acknowledgements. This research was partly supported by both Ministerio
de Ciencia e Innovacion (Spain) under the grant TIN2011-22668, and Comunidad
de Madrid (Spain) under project reference S2013/ICE-3095-CIBERDINE-CM.

References

1. Weier, H.: European Quantum Key Distribution Network. PhD thesis, Fac-
ulty of Physics. Ludwig Maximilians Universidt, Miinchen (Germany) (2011)
http://xqp.physik.lmu.de/publications/files/theses _phd/phd weier.pdf.

2. Garcia-Martinez, M.J., Denisenko, N., Soto, D., Arroyo, D., Orue, A.B., Fernandez,
V.: High-speed free-space quantum key distribution system for urban daylight
applications. Appl. Opt. 52(14) (May 2013) 3311-3317

3. Mucchi, L., Ronga, L., Del Re, E.: A novel approach for physical layer cryptography
in wireless networks. Wireless Personal Communications 53(3) (2010) 329-347

4. Kocher, P.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS, and
other systems. Lecture Notes in Comput. Sci. 1109 (1996) 104-113

5. Munilla, J., Peinado, A.: HB-MP: A further step in the HB-family of lightweight
authentication protocols. Computer Networks 51(9) (2007) 2262-2267 (1) Ad-
vances in Smart Cards and (2) Topics in Wireless Broadband Systems.

6. Hankerson, D., Menezes, A.J., Vanstone, S.: Guide to elliptic curve cryptography.
Springer-Verlag, New York, NY, USA (2004)

7. Wold, K., Petrovic, S.: Behavioral model of TRNG based on oscillator rings im-
plemented in FPGA. In: Proceedings of the 14" IEEE International Symposium
on Design and Diagnostics of Electronic Circuits Systems (DDECS). (April 2011)
163-166

8. Moradi, A., Kasper, M., Paar, C.: Black-box side-channel attacks highlight the
importance of countermeasures. Lecture Notes Comput. Sci. (Proceedings of The
Cryptographers’ Track at the RSA Conference 2012, San Francisco, CA, USA,
February 27 — March 2, 2012) 7178 (2012) 1-18

9. De Mulder, E., Ors, S.B., Preneel, B., Verbauwhede, I.: Differential power and elec-
tromagnetic attacks on a FPGA implementation of elliptic curve cryptosystems.
Comput. Electr. Eng. 33(5-6) (2007) 367-382

10. Sun, S., Yan, Z., Zambreno, J.: Experiments in attacking FPGA-based embedded
systems using Differential Power Analysis. In: Proceedings of the IEEE Interna-
tional Conference onElectro/Information Technology (EIT). (may 2008) 7-12

11. Kocher, P., Jaffe, J., Jun, B.: Introduction to differential power analysis
and related attacks. Technical report, Cryptography Research Inc. (1998)
http://www.cryptography.com /resources/whitepapers/DPATechInfo.pdf.

14

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. Lecture Notes in Comput.
Sci. 1666 (1999) 388-397

Kocher, P., Jaffe, J., Jun, B., Rohatgi, P.: Introduction to differential power anal-
ysis. J. Cryptograp. Eng. 1 (2011) 5-27

Quisquater, J.J., Samyde, D.: A new tool for non-intrusive analysis of smart cards
based on electromagnetic emissions, the SEMA and DEMA methods. In: EURO-
CRYPT2000 Rump Session. (2000)

Quisquater, J.J., Samyde, D.: ElectroMagnetic Analysis (EMA): Measures and
counter-measures for smart cards. Lecture Notes in Comput. Sci. 2140 (2001)
200-210

Quisquater, J.J., Samyde, D.: Eddy current for magnetic analysis with active
sensor. In: Proc. of 3¢ Conference on Research in SmartCards, E-Smart’02, Nice,
France (2002) 185-194

Boneh, D., DeMillo, R., Lipton, R.: On the importance of checking cryptographic
protocols for faults. Lecture Notes in Comput. Sci. 1233 (1997) 37-51
Skorobogatov, S.: Semi-invasive attacks-A new approach to hardware security
analysis. PhD thesis, University of Cambridge, Darwin College. UK (2005)
http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-630.pdf.

Kerckhoffs, A.: La cryptographie militaire. Journal des sciences militaires IX
(1883) 1-2, 5-38, 161-191

Fuentes Rodriguez, A., Herndndez Encinas, L., Martin Mutioz, A., Alarcos Alcazar,
B.: A toolbox for DPA attacks to smart cards. Advances in Intelligent Systems
and Computing (International Joint Conference SOCO’13-CISIS’13-ICEUTE’13)
239 (2014) 399408

Mangard, S., Oswald, E., Popp, T.: Power analysis attacks: Revealing the secrets
of smart cards (Advances in Information Security). Springer Science-+Business
Media, NY, USA (2007)

Brier, E., Clavier, C., Olivier, F.: Correlation power analysis with a leakage model.
Lecture Notes Comput. Sci. 3156 (2004) 1629

Messerges, T., Dabbish, E., Sloan, R.: Examining smart-card security under the
threat of power analysis attacks. IEEE Trans. Comput. 51(4) (2002) 541-552
Peeters, E., Standaert, F.X., Donckers, N., Quisquater, J.J.: Improved higher-order
side-channel attacks with FPGA experiments. Lecture Notes Comput. Sci. 3659
(2005) 309-323

Muller, F., Valette, F.: High-order attacks against the exponent splitting protec-
tion. Lecture Notes Comput. Sci. 3958 (2006) 315-329

Standaert, F.X., Veyrat-Charvillon, N., Oswald, E., Gierlichs, B., Medwed, M.,
Kasper, M., Mangard, S.: The world is not enough: Another look on second-order
DPA. Lecture Notes Comput. Sci. 6477 (2010) 112-129

Fuentes Rodriguez, A., Hernandez Encinas, L., Martin Mufioz, A., Alarcos Alcézar,
B.: Disefio de un conjunto de herramientas software para ataques por canal lateral.
In: Libro de Actas del VII Congreso Iberoamericano de Seguridad Informatica,
CIBSI’2013. (2013)

Namolaru, M.: Devirtualization in GCC. In: Proceedings of the GCC Develop-
ers’ Summit. (2006) http://ols.fedoraproject.org/GCC/Reprints-2006 /namolaru-
reprint.pdf.

