An Innovative Linear Complexity Computation for Cryptographic Sequences

J.L. Martín-Navarro, A. Fúster-Sabater, S. D. Cardell
Á. Herrero et al. (Eds.). 13th International Conference on Computational Intelligence in Security for Information Systems (CISIS 2020). Advances in Intelligent Systems and Computing (AISC), vol. 1267. Springer, Cham, pp. 339-349, 2021.

A simple algorithm to compute the linear complexity of binary sequences with period a power of 2 has been proposed. The algorithm exploits the fractal structure of the binomial representation in this kind of binary sequences. The application of the general algorithm to a particular family of cryptographic sequences (generalized sequences) improves its performance as decreases the amount of sequence to be processed.

Research partially supported by Ministerio de Economía, Industria y Competitividad, Agencia Estatal de Investigación, and Fondo Europeo de Desarrollo Regional (FEDER, UE) under project COPCIS (TIN2017-84844-C2-1-R) and by Comunidad de Madrid (Spain) under project CYNAMON (P2018/TCS-4566), also co-funded by European Union FEDER funds. The first author was supported by JAE INTRO’19.