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Motivation

• Limitations of binary electronics
• Moore’s curse – 3 scaling walls

• Power wall
• Problems with delivering and dissipation of power as density of transistors increases

• Relatively long wiring inside the chip also generates heat

• Memory wall
• Latency and bandwidth gap between on-chip data processing and off-chip data retrieval

• Processors’ power has been growing exponentially, while memory performance increased
linearly – this has now stopped (after 2005), however the gap is huge, thus almost no benefit
with increasing processing power of CPU while memory retrieval is so inefficient

• Electronic Design Automation (EDA) wall
• Chip design, simulation, and verification tools development cannot follow the technology

development fast enough



Motivation

• Post-binary electronics – CMOS replaced by
• CNTFET (Carbon Nanotube FET) – as cheap as binary technology!

• Memristor – experimental, but promising

• TCMOS (Ternary CMOS), etc.

• Three-state logic considered most often
• Multiple-Valued Logic (MVL) with more than 3 levels also intensively studied

• Still, ternary is considered most practical, commercial hardware exists

• Historically, first ternary computers were built in mid-20th century in 
USSR (Setun, Setun-70), but they were not widely accepted – the 
world trend was binary



Motivation

• The radix economy – a cost metric to compute the optimal radix
• 𝑟𝑤 – product

• 𝑟 – the radix (modulus)

• 𝑤 – number of positions needed to encode a random integer 𝑛 ∈ 0,… ,𝑁 − 1

• Example – to encode 5 in binary, we need 𝑤 = 3 positions (𝑟 = 2, so 𝑟𝑤 = 6), in 
unbalanced ternary (the symbols are 0, 1, 2) we need 𝑤 = 2 positions (𝑟 = 3, so 𝑟𝑤 =
6), in balanced ternary (the symbols are −1, 0, 1) we need 𝑤 = 3 positions (𝑟 = 3, so 
𝑟𝑤 = 9) 
• Binary: 101

• Unbalanced ternary: 12

• Balanced ternary: 1,−1,−1 (+-- or 1𝑍𝑍 or 1𝑇𝑇) (= 1 × 32 − 1 × 31 − 1 × 30)

• Averaged the function 𝑟𝑤 over all 𝑛 ∈ 0,… ,𝑁 − 1 , it turns out that the minimum of 
this average is obtained for 𝑟 ≈ 𝑒, which is closer to 3 than to 2



Motivation – 7 Cs of benefit

• IoT applications – a promising environment for ternary logic (1)
• Computation

• Greater “digit-size” of a device can be achieved with a smaller number of “transistors”

• Communication
• MVL is natural for communication

• WiFi 7 (IEEE 802.11be) uses QAM-4096 (base 12)

• Bluetooth classic uses 8-DPSK (base 8)

• USB 4.2 uses binary encoded ternary (PAM-3)

• Consumption of energy
• On average, less power consumed on state transitions in ternary than in binary

• Possible to make energy-efficient MVL circuits with CNTFETs and TCMOS



Motivation – 7 Cs of benefit

• IoT applications – a promising environment for ternary logic (2)
• Compression

• A smaller number of ternary memory devices needed to store the same amount of 
information than in binary

• Example (trit – tryte in ternary analogous to bit-byte in binary)

• Setun’s tryte had 6 trits (like with bytes, CDC byte had 6 bits, IBM byte had 8 bits)

• 1 tryte = 8 trits = log2 3
8 ≈ 12.65 bits

• 1 tryte = 6 trits = log2 3
6 ≈ 9. 5 bits

• 1 tryte = 5 trits = log2 3
5 ≈ 7. 9 bits, similar to binary – a motivation for use of a 5-trit tryte

• Comprehension
• With ternary, we can model the processes that include partial or unknown information, 

not only those that are well-modelled with true or false only (Kleene logic)



Motivation – 7 Cs of benefit

• IoT applications – a promising environment for ternary logic (3)
• Cybersecurity

• More information density offered in ternary enables larger key spaces with the same 
number of units (e.g., 128-trit keys instead of 128-bit keys)

• Ternary Physical Unclonable Functions (PUFs) – such circuits already exist with CNTFETs

• By mixing binary and ternary signals in encryption schemes the logic states are obscured, 
and it is difficult to follow the signals by means of binary side-channel attack hardware

• Differential Power Analysis (DPA) also more difficult if MVL is used for implementation of 
cryptographic solutions

• Complexity
• With 2 inputs and 1 output, there are 24 possible Boolean functions in binary, while in 

ternary, with 2 inputs and 1 output, we can realize 39 functions



Ternary computing in practice

• Balanced ternary most often used
• Negative numbers easily represented and realized (3’s complement not 

necessary)

• Easier to realize in electronic circuits than unbalanced ternary

• Easier to combine with binary circuits

• Trit instead of a bit

• Tryte instead of a byte
• Most often 6 trits (like Setun), but also 3, 5, or 9 trits have been used

• Heptavintimal (base 27) instead of hexadecimal (or octal)



Ternary computing in practice

Decimal 0 1 2 3 4 5 6 7 8 9 10 11 12 13

Ternary 000 001 002 010 011 012 020 021 022 100 101 102 110 111

Heptavintimal 0 1 2 3 4 5 6 7 8 9 A B C D

Decimal 14 15 16 17 18 19 20 21 22 23 24 25 26

Ternary 112 120 121 122 200 201 202 210 211 212 220 221 222

Heptavintimal E F G H K M N P R T V X Z



Infrastructure for cryptodesign in MVL

• Pseudorandom sequence generators realized in MVL technology
• Basic building block – Linear Feedback Shift Register (LFSR)

• On the level of the whole period – satisfies the 3 Golomb’s postulates if the feedback 
polynomial is primitive

• Another important building block – Boolean function
• Non-linear filter (input – several stages from the same LFSR)

• Non-linear combiner (input – outputs of several LFSRs)

• Typical pseudorandom sequence generator for IoT based on LFSRs
• A single LFSR of moderate length (up to 100 bits/trits)

• A non-linear filter function

• In MVL, to realize LFSR, we need primitive polynomials in GF(p), 𝑝 > 2



Infrastructure for cryptodesign in MVL

• Realizing ternary gates in practice has been solved

• Realizing memory (flip-flops) in ternary has been a challenge so far
• They are needed to realize ternary LFSR in practice

• Recently, ternary shift registers with CNTFETs have been produced

• For example
• Yamani et al., Design an energy efficient pulse triggered ternary flip flops with

Pseudo NCFET logic, Analog Integrated Circuits and Signal Processing (2024) 
119:151–163 



Infrastructure for cryptodesign in MVL

• There exists software that can help in finding primitive polynomials in 
large extension Galois fields with a small non-binary ground field
• MATLAB has a coding-theory package implementing some algorithms that can 

be useful for this

• Open-source – for example, Sage (www.sagemath.org) - demo

• But they do not offer a direct answer to a typical question that we ask
in cryptodesign
• We need 𝑚 primitive polynomials of a given degree 𝑛 with 𝑘 non-zero 

feedback coefficients in GF(𝑝)

• That is the reason why we build our own infrastructure - demo

http://www.sagemath.org/


Infrastructure for cryptodesign in MVL

• Primitive polynomial
• The order of a polynomial 𝑃(𝑥), deg𝑃(𝑥) = 𝑛, 𝑃(0) ≠ 0 is the smallest 

integer 𝑒 for which 𝑃(𝑥) divides 𝑥𝑒 − 1

• In GF(𝑝𝑛), if the order of an irreducible polynomial 𝑃(𝑥) is 𝑝𝑛 − 1, this 
polynomial is called primitive polynomial

• To test whether a polynomial 𝑃(𝑥), deg 𝑃(𝑥) = 𝑛 in GF(𝑝𝑛) is primitive
• Test whether 𝑃(𝑥) is irreducible

• If 𝑃(𝑥) is irreducible, check whether it divides the polynomials 𝑥𝑘 − 1, 𝑛 ≤ 𝑘 < 𝑝𝑛 − 1

• If 𝑃(𝑥) does not divide any of the polynomials above, then it is primitive

• Obviously, this procedure is not efficient



Infrastructure for cryptodesign in MVL

• Primitive polynomial
• Theorem (Alanen, Knuth, 1964; Herlestam, 1982)

• A polynomial 𝑓(𝑥) in GF(𝑞), 𝑞 = 𝑝𝑛, deg 𝑓(𝑥) = 𝑛, is primitive if and only if it satisfies 
the following

1. ∀𝑥 ∈ GF 𝑞 , 𝑓 𝑥 ≠ 0

2. 𝑥𝑝
𝑛
≡ 𝑥 mod 𝑓 𝑥

3. For all prime factors 𝑝′ of 𝑝𝑛 − 1

𝑥 𝑝𝑛−1 /𝑝′ ≢ 1 mod 𝑓 𝑥

• If 𝑓(𝑥) is irreducible, then the conditions 1. and 2. are satisfied

• The condition 3. is trivially satisfied if 𝑝𝑛 − 1 is a prime
• 𝑝𝑛 − 1 can be a prime if 𝑝 = 2 (Mersenne primes), but not for 𝑝 > 2 (then, obviously,  
𝑝𝑛 − 1 always has the factor 2)



Infrastructure for cryptodesign in MVL

• Primitive polynomial – practical test
• Test the polynomial 𝑓 𝑥 for irreducibility

• If 𝑓 𝑥 is irreducible, then test the condition 3. of the Alanen-Knuth-
Herlestam’s theorem

• How to do this in practice in a large extension field with a non-binary 
ground field?



Infrastructure for cryptodesign in MVL

• Testing irreducibility efficiently
• Theorem

• If a polynomial 𝑓(𝑥) of degree 𝑛 with coefficients in GF(𝑝) does not have common 
factors with

𝑥𝑝
𝑘
− 𝑥 mod 𝑓 𝑥 , 1 ≤ 𝑘 ≤

𝑛

2
then it is irreducible

• Computing 𝑥𝑝
𝑘
− 𝑥 efficiently, for a (relatively) large 𝑘

• Solution – modular exponentiation

• Raising 𝑥 to the power of 𝑝 and reducing modulo 𝑓 𝑥 , for 1 ≤ 𝑘 ≤
𝑛

2

• gcd( 𝑥𝑝
𝑘
− 𝑥 mod 𝑓 𝑥 , 𝑓 𝑥 ) – Euclidean algorithm for polynomials



Infrastructure for cryptodesign in MVL

• Testing the condition 3. of the Alanen-Knuth-Herlestam’s theorem
• In general, we need factorizations of the integers, whose form is 𝑝𝑛 − 1

• For IoT, the interesting values for 𝑛 are < 1000
• In binary, there are factoring algorithms that proved to be very successful in factoring 

integers of the form 2𝑛 − 1 (e.g., Lucas-Lehmer)
• In addition, there are many Mersenne primes in this range

• for 𝑛 = 2, 3, 5, 7, 13, 17, 19, 31, 61, 89, 107, 127 etc.

• For these 𝑛, a polynomial is primitive if it is irreducible

• For 𝑝 > 2, it is more difficult, but much has been achieved regarding factoring
• Tables of factorizations exist

• For example, Brillhart et al., 1988 – factors of 3𝑛 − 1, 5𝑛 − 1, 7𝑛 − 1



Infrastructure for cryptodesign in MVL

• Practical realization
• We assume that, given 𝑛, the factorization of 𝑝𝑛 − 1 is known

• Suppose 𝑝𝑛 − 1 = 𝑝1𝑝2⋯𝑝𝑟 (multiplicity does not matter, we check only the 
quotients (𝑝𝑛−1)/𝑝𝑖)

• We pre-compute these quotients and encode them in binary

• Then we use modular exponentiation to compute 𝑥 𝑝𝑛−1 /𝑝𝑖 mod 𝑓 𝑥

• Demo – show the factorizations of 2𝑛 − 1, 3𝑛 − 1, 5𝑛 − 1 up to 𝑛 = 257



Infrastructure for cryptodesign in MVL

• Implementation
• We must implement basic operations with polynomials (simplifications that 

hold in GF(2) do not hold for 𝑝 > 2)
• Addition, subtraction

• Multiplication, division

• gcd for polynomials

• Powering of a polynomial (modular exponentiation)

• LFSR synthesis (the Berlekamp-Massey algorithm)

• Many small auxiliary routines that are not needed in binary
• Example – conversion to a monic polynomial, conversion to a polynomial with positive 

coefficients etc. 



Infrastructure for cryptodesign in MVL

• Boolean functions (1)
• For stream ciphers, we need balanced, non-linear functions, far away from 

the linear ones
• Bent functions are “the most distant from linear”, but unbalanced

• We have to find a compromise – as non-linear and distant from linear as possible, but
balanced

• How do we find such functions?
• In binary, we can compute Walsh transform to check how far the given function is from

linear functions – for bent functions, all the values are ±2𝑛/2

• In ternary (MVL in general) we can use the generalized Walsh transform
• Vilenkin-Chrestenson transform – has been used to obtain ternary bent functions

• For ternary bent functions, all the values are ±3𝑛/2



Infrastructure for cryptodesign in MVL

• Boolean functions (2)
• In binary, given a Boolean function, we can compute its Walsh transform

• If the values of the Walsh transform are relatively small, the function is far from linear

• In MVL (including ternary), we can compute Vilenkin-Chrestenson transform
and perform a similar check

• Checking balancedness is easy – through the truth table

• Practical procedure
• Generate a (ternary) Boolean function at random

• Check its Vilenkin-Chrestenson spectrum

• Check the balancedness by inspecting the truth table



Infrastructure for cryptodesign in MVL

• Boolean functions (3)
• Practical realization

• In binary
• Algebraic Normal Form (ANF) from the truth table

• Walsh transform

• In ternary (in progress)
• Algebraic Normal Form (ANF) from the truth table

• Vilenkin-Chrestenson transform



Resources (1)

• Brousentsov N. P., Maslov S. P., Ramil Alvarez J., Zhogolev E.A., 
Development of ternary computers at Moscow State University, 
https://www.computer-museum.ru/english/setun.htm

• Ternary research group at University of South-Eastern Norway   
https://ternaryresearch.com/

• McEliece R. J., Finite Fields for Computer Scientists and Engineers, 
Kluwer, 1987

• Brillhart J., Lehmer D.H., Selfridge J.L., Tuckerman B., Wagstaff S.S. 
junior, Factorizations of 𝑏𝑛 ± 1 Up to High Powers, AMS, 1988

https://www.computer-museum.ru/english/setun.htm
https://ternaryresearch.com/


Resources (2)

• Bos S., PhD thesis, University of South-East Norway, May 2024, 
https://openarchive.usn.no/usn-xmlui/handle/11250/3127984

• Thornton M.A., Modeling Digital Switching Circuits with Linear
Algebra, re-print, Springer, 2022

• Stanković S. et al., Representation of Multiple-valued Bent Functions 
Using Vilenkin-Chrestenson Decision Diagrams, 2011 41st IEEE 
International Symposium on Multiple-Valued Logic, pp. 62-68 

https://openarchive.usn.no/usn-xmlui/handle/11250/3127984
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