DISEÑO DE APERTURAS BIDIMENSIONALES DISPERSAS EN BASE A LA ESTADÍSTICA DE PASEO ALEATORIO

Óscar Martínez-Graullera, Virginia Yagüe-Jiménez, Alberto Ibañez, Montserrat Parrilla

Grupo de Procesamiento de Señales en sistemas Ultrasónicos Multicanal (MUSP) Instituto de Tecnologías Físicas y de la Información (ITEFI) Consejo Superior de Investigaciones Científicas (CSIC)

October 3, 2017

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

La imagen ultrasónica

La imagen ultrasónica en una de las técnicas de diagnóstico más utilizadas

El futuro de la imagen ultrasónica esta en la imagen 3D:

- Diseño de aperturas 2D.
- Diseño de instrumentación compleja.
- El desarrollo de nuevas técnicas de imagen.

Imagen 3D: la apertura

Diseño de aperturas bidimensionales:

- El área de apertura determina la resolución lateral de la imagen.
- La densidad de la apertura debe garantizar una distancia de λ/2 entre elementos próximos.

Prestaciones de los arrays lineales y matriciales:

Array 1D (N_e)	32	64	96	128	256
Array 2D (N_e)	1024	4096	9216	16384	65536
Resolución (-6dB)	30	1.6°	1.1°	0.8^{o}	0.4^{o}
Rango Dinámico	-45dB	-55dB	-59dB	-62dB	-70dB

La tecnología permite implementar aperturas de miles de elemento.

El desarrollo de sistemas que puedan manejar simultáneamente un gran número de elementos supone un reto

Imagen 3D: el sistema

CSIC

Soluciones para arrays matriciales:

- Separable Beamforming
- Rectilinear Scanning.
- Phased Subarray Beamforning
- Microbeamforming.

Soluciones técnicas que simplifican el control pero sacrifican prestaciones:

- Soluciones de complejidad tecnológica.
- Resolución lateral.
- Rango dinámico.
- Velocidad de adquisición.

Alternativa: la Imagen Sintética

Imagen Sintética: captura independiente de todas las señales

- Permite un análisis más completo de la información.
- Precisa de una gran capacidad de procesamiento: alta calidad de imagen.
- Adquisición de imagen relacionada con N_e y el paralelismo del sistema.

El número de elementos es un compromiso entre el rango dinámico y las prestaciones del sitema.

Aperturas dispersas: reducir el número de elementos activos en la apertura.

- > Aperturas matriciales: aleatorias, optimizadas, etc.
- Aperturas con distribución no regular: espirales, etc.

Alcanzar los 60dB de rango dinámico exige al menos 1000 elementos

Aperturas Fermat 64e

- Diametro: 64λ
- ► N_e: 64

Prestaciones (BW: 60%):

- Resolución lateral : 1.6°
- Rango Dinámico: 35dB

Apertura sintética: TFM

- 64 disparos por imagen
- GPGPU beamforming
 - ROI focalizada
 - 30 img/seg

Los lóbulos estan formados por el 2% de los elementos

Distribución de las muestras en un punto

$$\mathbf{A}[k,l] = \{\hat{s}_{i,j}[k,l]\}, \quad i = \{i_1, \cdots, i_N\}, \quad j = \{j_1, \cdots, j_N\}$$

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

Análisis de la distribución de las fases

Construimos una señal periodica y buscamos el valor de la distribución unimodal a través del desarrollo en serie de Fourier.

$$c_n[k,l] = \frac{1}{2\pi} \int_{-\pi}^{\pi} P(\phi) e^{-i2\pi \frac{n}{2\pi}\phi} d\phi = \frac{1}{2\pi} \sum_{i=i_1}^{i_N} \sum_{j=j_1}^{j_N} e^{-in\phi_{i,j}[k,l]}$$

RandomWalk Beamformer

Calculamos el componente de primer orden:

$$\begin{aligned} c_1[k,l] &= \frac{1}{2\pi} \sum_{i=i_1}^{i_N} \sum_{j=j_1}^{j_N} e^{-\mathrm{i}\phi_{i,j}[k,l]} \\ &= \frac{1}{2\pi} \sum_{i=i_1}^{i_N} \sum_{j=j_1}^{j_N} \cos(\phi_{i,j}[k,l]) - \mathrm{i}\frac{1}{2\pi} \sum_{i=i_1}^{i_N} \sum_{j=j_1}^{j_N} \sin(\phi_{i,j}[k,l]) \\ &= \frac{1}{2\pi} \sum_{i=i_1}^{i_N} \sum_{j=j_1}^{j_N} \frac{I_{i,j}[k,l]}{\mathbf{S}_{i,j}[k,l]} - \mathrm{i}\sum_{i=i_1}^{i_N} \sum_{j=j_1}^{j_N} \frac{Q_{i,j}[k,l]}{\mathbf{S}_{i,j}[k,l]} \end{aligned}$$

$$RWB[k, l] = \frac{2\pi}{i_N \times j_N} |c_1[k, l]| = \frac{1}{N_m} \left| \sum_{i=1}^{N_m} \frac{I_i[k, l]}{\mathbf{S}_i[k, l]} - \mathsf{i} \sum_{i=1}^{N_m} \frac{Q_i[k, l]}{\mathbf{S}_i[k, l]} \right|$$

Estadistica del paseo aleatório

CSIC

Distribución de Rayleigh:

$$\Gamma[n] = \frac{2n}{N_m} \exp^{-n^2/N_m}$$

N _e	N_m	99.99%	$N_u(\%)$
64	4096	238	5%
96	9216	357	4%
128	16380	476	3%
256	65636	952	1.5%

Mínimo número de coincidencias con significación estadística

Objetivo: generar una distribución que haga que su patron de interferencias pueda ser destruido por el efecto no lineal de la conformación RandomWalk.

RWB: Apertura matricial 8×8

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

 N_e : 64; Diametro: 64 λ (rejilla: 4 λ); BW: 60%

RWB: Apertura Fermat 64

 N_e : 64; Diametro: 64 λ (distribución de Fermat); BW: 60%

- Lóbulos de rejilla con el 2% de las señales.
- Umbral con el 5% de señales.

RWB: Apertura Fermat 64

Eliminado el patrón de difracción el rango dinámico queda determinado por la SNR por canal y el número de señales involucradas

20

Modelo de simulación

- Cuatro reflectores situados el en arco de mayor interferencia.
- Diferencias entre la reflectividad: 46dB

•
$$\theta_o = \{-10^o, -5^0, 0^o, 10^o\}$$

•
$$A_o = \{-21dB, -15dB, -15dB, 25dB\}$$

Array matricial 128×128

Rango Dinámico: 62dB. N = 16380

▲□ > ▲圖 > ▲ 画 > ▲ 画 > → 画 → のへで

Array matricial 8×8

・ロト ・聞ト ・ヨト ・ヨト

æ

Rango Dinámico: 15dB. N = 64

Array de Fermat 64

Rango Dinámico: 35dB. N = 64

Se detectan reflectores con una diferencia de 46dB en su reflectividad

Conclusiones

- El RWB permite reducir el impacto de los lóbulos de rejilla si este es creado por un porventaje de señales inferior a su umbral de detección.
- Es posible diseñar aperturas donde el RWB mejore las prestaciones de la misma.
 - Anula el patrón de difracción de la apertura
 - El rango dinámico queda determinado por el número de señales y la SNR por canal.
- Las aperturas dispersas basadas en la espiral de Fermat mejoran con el RWB.

AGRADECIMIENTOS: Proyecto DPI2016-80239-R (AEI/FEDER, UE).

Array Fermat 128

Ne: 128; Diametro: 64λ (distribución de Fermat); BW: 60%

- Lóbulos de rejilla con el 1% de las señales.
- Umbral con el 3% de señales.

Array Fermat 128

Ne: 128; Diametro: 64λ (distribución de Fermat); BW: 60%

- Lóbulos de rejilla con el 1% de las señales.
- Umbral con el 3% de señales.

Acknowledgement

This work has been supported by the AEI/FEDER (EU). Project DPI2016-80239-R