Room temperature CO₂ detection by metal oxides based nanosensors José Pedro Santos^{1*}, Isabel Sayago¹, Carlos Sanchez-Vicente¹ and Júlia González² ¹ Institute of Physical and Information Technologies, Spanish National Research Council, CSIC-ITEFI C/Serrano 144, 28006 Madrid. jp.santos@csic.es ² Physics faculty, University of Barcelona, Martí i Franquès, 1, 11, 08028 Barcelona, Spain **Carbon dioxide** is considered a greenhouse gas and is the main cause of global warming. CO_2 emissions are increasing each year (420 ppm this year). Therefore, it is important to be able to detect these CO_2 levels with sensors that can work at room temperature (RT). An array of 4 sensors (Fe_2O_3 , SnO_2 , ZnO and CuO) has been tested for the detection of CO_2 at RT in dry and humid (50 %HR) air. Low-cost sensors were prepared by the drop-casting technique from nanoparticle dispersions. Photoactivation of the sensors with UV-LED allows detection of CO_2 at ambient temperature. Humidity improves the response of all sensors to CO_2 and concentrations as low as 100 ppm CO_2 can be detected. ### Materials | Sensor | Material | NP diameter (nm) | |-----------|--------------------------------|------------------| | S1 | SnO ₂ | 100 | | S2 | ZnO | 50 | | S3 | CuO | 50 | | S4 | Fe ₂ O ₃ | 50 | **Dispersions of nanoparticles** in deionized water (2.5 mg/ml). Sonication before drop-casting. **Multisensor platform**: FR-4 substrate (Eurocircuits NV, Belgium). FR-4 (diameter: 15.24 mm, thickness: 0.3 mm) is a flame resistance, almost zero water absorption and wide operating temperature range (from 50 °C to 115 °C). # Methods #### **Drop-casting** Measurement setup **Dropcaster device** Sonication **Drop-casting** Stepper motor **UV Led (360 nm)** Micro siringe (10 μL) SnO₂ SnO₂ + Gr Sensor Zoom (mini camera) (200 ppm %wt) $(2,5 \text{ mg}\cdot\text{L}^{-1} \text{ in H}_2\text{O})$ LCD touch screen Results #### **SEM** images of different metal oxides # Responses of different sensors at 50 % RH Responses of SnO₂ and ZnO sensors to CO₂ at 0% and 50 % RH ## Conclusions - Low CO_2 concentrations detection (100 ppm). SnO_2 and ZnO sensors respond better to different CO_2 concentrations. On the other hand, the response of Fe_2O_3 and CuO sensors is lower and it is practically the same for different CO_2 concentrations. - **UV LED**: speed up gas desorption from sensitive layer. - **Humidity** effect: increase response. - Cheap fabrication method.