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RESUMO

Imagens ultrassônicas possuem importante papel no diagnóstico médico e ensaio não

destrutivo. Uma das alternativas para geração de imagens consiste em utilizar um array, um

transdutor composto por um conjunto de elementos piezelétricos, para gerar diversas frentes

de ondas e amostrar suas reflexões. Uma característica física importante para construção dos

arrays é a sua dimensão. Quanto maior a extensão do array, melhor será a resolução lateral

da imagem gerada. Além disso, uma recomendação de fabricação dos arrays é que o centro

do seus elementos precisam estar espaçados por uma distância (pitch) menor ou igual a 0, 5λ,

em que λ é o comprimento da onda gerada pelo transdutor. Desta forma, as imagens geradas

por esses arrays não apresentam artefatos causados pelos lóbulos de espaçamento. A recomen-

dação para o uso de arrays é que seja o maior array possível, respeitando a restrição de pitch.

No entanto, o volume de dados, recursos e custo de fabricação aumentam proporcionalmente

à medida que o número de elementos no array aumenta, o que pode torná-lo impraticável de-

pendendo da aplicação. Esta tese propõe técnicas para reduzir o uso de recursos em sistemas

ultrassônicos visando obter imagens com alta resolução lateral e mitigar eventuais desvanta-

gens. No primeiro estágio, arrays esparsos lineares cujos pitches são superiores que 0, 5λ são

estudados. Propõe-se uma nova estratégia para projetar esses arrays, na qual é apresentada

uma nova codificação matemática para os arrays esparsos e uma função de aptidão baseada

na equação de energia e entropia das PSFs (Point Spread Function). Posteriormente, algorit-

mos de otimização estocástico são utilizados para desenhar as configurações esparsas lineares.

A função aptidão proposta foi comparada com a função aptidão mais utilizada na literatura,

baseada no diagrama de radiação. Identificou-se que a função proposta valoriza configurações

de arrays esparsos que geram imagens com melhor equilíbrio entre contraste e resolução lateral.

Além disso, foi identificado que a função aptidão proposta na literatura apresenta inconsistên-

cias ao avaliar os arrays esparsos, o que não ocorre na função proposta. Em seguida, uma nova

estratégia de aquisição de dados para arrays bidimensionais que não estão em uma malha é

proposta. A estratégia se baseia em analisar as projeções dos elementos do coarray e manter

somente as combinações de elementos emissores e receptores mais importantes para a geração

de imagens. Assim, o número de aquisições e volume de dados de aberturas esparsas bidi-

mensionais, cujos elementos não estão posicionados em uma malha, é reduzido, bem como o

tempo de geração de imagens. As análises dos resultados indicaram a viabilidade em reduzir os

sinais adquiridos sem comprometer a qualidade das imagens geradas. Adicionalmente, foram

desenvolvidas duas figuras de mérito baseadas na análise da disposição espacial dos elementos,

que por sua vez foram utilizadas para avaliar arrays 2D esparsos. A relação entre as figuras de

mérito desenvolvidas e a energia irradiada pelos arrays foi estudada e, a partir desta análise,

uma função custo desenvolvida. Em seguida, é apresentada uma estratégia para projetar arrays

2D esparsos utilizando o algoritmo simulated annealing. As análises do diagrama de radiação

das aberturas bidimensionais esparsas obtidas pelo algoritmo de busca possuem característi-



cas desejáveis com alta resolução lateral e baixa intensidade nos artefatos. A tese possui três

contribuições para os sistemas de geração de imagens por ultrassom que reduzem os custos de

manufatura e computacional.

Palavras-chave: Algoritmos de Otimização Estocástico. Arrays 2D Esparsos. Array Lineares

Esparsos. Metaheurísticas.



ABSTRACT

Ultrasonic images have an important contribution to medical diagnosis and non-destru-

ctive testing. One strategy to generate an image is to use an array, which is a transducer com-

posed of a set of piezoelectric elements, that emits several wavefronts and samples the reflected

waves. An important physical characteristic of arrays is their dimension. The wider the array

extension, the better the lateral resolution of the generated image will be. Additionally, a con-

struction recommendation for arrays is that the centre of their elements must be spaced by a

distance (pitch) less or equal to 0.5λ, where λ is the generated wavelength by the transducer.

Thus, the images generated by these arrays do not present artefacts caused by the grating lobes.

The recommendation for using arrays is that it has to be the wider array possible, respecting

the pitch recommendation. However, the data volume, resource, and manufacturing cost pro-

portionally increase as the number of elements in the array rises, which might be impractical

to use this array depending on the application. This thesis investigates techniques to reduce the

use of resources in ultrasonic systems aiming to achieve images with high lateral resolution and

mitigate any disadvantages. In the first part of this thesis, the linear sparse arrays, which are

arrays that pitch higher than 0.5λ are studied. A new strategy to design these arrays is proposed,

where a new mathematical codification for sparse arrays and fitness function based on the equa-

tion of energy and entropy of the PSFs (Point Spread Function) are presented. Subsequently,

stochastic optimization algorithms are used to design sparse configurations. The proposed fit-

ness function was compared with the most used fitness function in the literature based on the

radiation pattern. The sparse arrays found using the proposed fitness function generated images

with a balance between contrast and lateral resolution. Moreover, it was noticed that the fitness

function proposed in the literature has inconsistencies when evaluating sparse array configu-

rations which do not happen with the proposed fitness function. Next, a new data acquisition

strategy for synthetic aperture for two-dimensional arrays that are not in a grid is proposed.

This strategy is based on analysing the projections of the elements of the coarray and keeping

only the combinations of emitter and receiver elements that are most important for image gen-

eration. Consequently, the number of acquisitions and data volume of sparse two-dimensional

apertures, whose elements are not positioned in a grid, is reduced, as well as the image gen-

eration time. The results indicate that it is possible to reduce the number of acquiring signals

without compromising the quality of the ultrasonic image generated. In addition, two figures of

merit based on the spatial distribution of the elements were used to evaluate sparse 2D arrays.

A study of these parameters and how they influence the energy irradiated by arrays is done, and

a fitness function is created. Then, a strategy to design a sparse 2D array is proposed using

the simulated annealing algorithm. The radiation pattern analysis of the sparse arrays obtained

from the search algorithm shown that the aperture generated images with high lateral resolution

and low artefact intensities. The radiation pattern analysis of the sparse arrays obtained from the

search algorithm showed that the aperture generated images with high lateral resolution and low



artefact intensities. This thesis has three main contributions to ultrasonic systems that reduce

manufacturing and computational costs.

Keywords: 2D Sparse Arrays. Linear Sparse Arrays. Metaheuristics. Stochastic Optimization

Algorithms.
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1 INTRODUCTION

Ultrasonography is a relevant medical procedure used in several areas such as cardi-

ology, orthopedics, and gynaecology. Using ultrasonic images, pathologies are detected in a

non-ionizing, non-invasive, and non-traumatic way. It also allows the visualization of abnor-

malities that are not detected using other techniques, such as the ventricular septal defect, which

cannot be diagnosed using the electrocardiogram (DAKKAK; OLIVER, 2020).

Ultrasonic systems are cheaper than other equipaments, such as tomography or mag-

netic resonators. It allows fast diagnosis and can be used to combat pandemics by earlier iden-

tifying a person suffering from an illness, such as the use of lung ultrasound to diagnose the

coronavirus (COVID- 19) (DUGGAN et al., 2020; QIAN et al., 2020; YU et al., 2020; BE-

VAN et al., 2020). It is also used for non-destructive testing to monitor parts and prevent

accidents. There are several applications for ultrasound imaging in non-destructive testing to

detect defects in parts and structures, such as cracks, delaminations and corrosions, and prevent

accidents (LAROCHE et al., 2020; JOLLY et al., 2015; KHALILI; CAWLEY, 2018).

The simplest way to generate an ultrasonic image is to use a single-element trans-

ducer, for example, a piezoelectric element that converts electrical energy into acoustic pres-

sure, and vice-versa. The transducer is excited, generating an acoustic wave that interacts with

the medium (reflections, refractions, attenuation, etc.), and the same transducer can receive the

echoes. By moving the transducer along a line, for example, an image can be created by plot-

ting the reflected amplitudes for each transducer position. An array is a group of piezoelectric

elements which can be linearly placed to image a section of an object, or bidimensionally (2D),

to create volumetric images. One significant advantage of using arrays is that the individual

elements can be independently excited, creating the possibility of beam steering and focusing

without the need to move the array (or demanding small movements, in some cases). Although

electronic complexity increases, lateral resolution and contrast can be improved compared to

single-element operation (DRINKWATER; WILCOX, 2006).

When using an array, a recommendation for the distance between the centre of adjacent

elements is at most 0.5λ, where λ is the wavelength (LOCKWOOD et al., 1996a). This distance,

called pitch, is relevant because, when the elements have a pitch higher than 0.5λ, the resulting

irradiated energy sums in different areas resulting in image deterioration. Another feature that

contributes to image quality is the size of an array: the broader an array, the better the lateral

resolution of an image (TRUCCO, 1999).

In this sense, the construction recommendation is to use larger arrays with 0.5λ pitch.

Nevertheless, extending the size of an array increases the number of elements, and, in conse-

quence, increases the electronic complexity, data volume, and time to generate an image, which

might be undesirable for a specific application or even make the imaging system impractical.

The need to find a solution for this problem is clear for 2D arrays, which are used to
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create volumetric images. Considering an array with 32λ × 32λ dimension, if the elements

are placed in a matrix pattern, 16384 elements would be required. Despite this type of array

being physically fabricated using CMOS technology (ORALKAN et al., 2003), the resource to

control all these elements turns its use impractical. For example, using the synthetic aperture

technique (JENSEN et al., 2006), which is an imaging strategy where the emitter elements of

the array are sequentially excited and the sampled ecos stored and post-processed, 268,435,456

mathematical operations would be necessary to create an image pixel, which is time-consuming

and impractical for real-time applications.

There are different strategies to enable the use of this array. For example, Karaman et

al. (2009) created a method that defines the minimum number of elements in a matrix array,

decreasing the time to generate an image. Combining the synthetic aperture technique and their

strategy would be required 64,516 mathematical operations to create an image pixel, consider-

ably reducing the number of operations. However, this strategy only works for matrix arrays.

For arrays where the elements are not placed in a matrix grid (non-grid arrays), it is neces-

sary to create a different method that selects the emitter and receiver elements of the aperture,

which creates a routine that reduces the number of acquisitions required, enabling real-time

applications and decreasing the computation cost to generate an image for non-grid arrays.

Another strategy consists in creating a sparse array, in which elements’ pitches are

higher than 0.5λ. With fewer elements, the area covered is still high and the lateral resolu-

tion remains elevated. However, because of the energy summing in different areas, the sparse

array has the problem of decreasing the image’s contrast compared to an array that respects the

0.5λ recommendation. Although linear arrays uses fewer elements (64 to 256) and is commer-

cially spread, the use of sparse linear arrays might be still beneficial. For example, new imaging

systems migth use the power supply and computation power of cellphones to generate images.

Sparse arrays could be handy for this application, as fewer elements demand fewer resources

(battery, processing). Moreover, if a certain number of elements in a probe burns, a sparse lin-

ear array could be designed to work without this array. The burned and some specific elements

from the array are excluded from the imaging process, and the resulting image still would have

good lateral resolution and contrast. This strategy allows to recycle and extend the array’s life.

The need for sparse 2D arrays is straightforward justified when compared to linear ar-

rays because of the higher number of elements and signals involved. At this date, matrix ar-

rays with a reasonable size, as mentioned previously, have an elevated number of elements,

becoming impossible to control all of them simultaneously (MARMONIER et al., 2022). Con-

sequently, 2D sparse arrays are practically mandatory to achieve high lateral resolution using a

manageable number of elements.

One strategy is to distribute the elements using a nature-based equation, such as the

Fermat spiral equation, where the displacement is in a non-grid area. With fewer elements, it

is possible to cover a wider area and distribute the elements with reduced periodicity, which is
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a problem that contributes to increased artefact intensities in ultrasonic images (MARTÍNEZ–

GRAULLERA et al., 2010).

Another strategy is to use search engines to design a sparse configuration, where the

algorithm determines the elements’ position (ROUX et al., 2017). These search algorithms,

called metaheuristics, are part of stochastic optimization methods that can intelligently test

solutions and return the best-found, according to a predefined condition (NESMACHNOW,

2014). In general, for ultrasonic imaging systems, the search mechanism creates different sparse

configurations and finds one that attends to defined circumstances, such as image quality and

system resources. Moreover, these two strategies can be merged to create sparse 2D arrays

where, at first, the elements are placed in a non-grid distribution. Then, metaheuristics eliminate

elements and create a more sparse aperture.

1.1 OBJECTIVE

The main goal of this work is to find strategies to decrease the time, data volume and

resources of an ultrasonic imaging system.

1.1.1 Specifc objectives

• Understand how the ultrasonic images are generated and investigate the modelling meth-

ods used to evaluate linear and 2D arrays.

• Analyse the different metaheuristics to design sparse linear arrays.

• Propose a technique to design linear sparse arrays.

• Identify and remove redundant information for imaging systems based on synthetic aper-

ture for 2D arrays.

• Define a strategy to design 2D sparse arrays for non-grid apertures.

1.2 OUTLINE OF THE WORK

Chapter 2 gives the theoretical background and the literature review regarding funda-

mental and state-of-the-art techniques used in this work, where the mathematical functions used

to evaluate, types and the strategies used to create sparse arrays are presented. Then, different

metaheuristics working to design linear sparse array configurations are analysed, where a new

codification and a fitness function based on the simulation of a point reflector are presented in

chapter 3. In chapter 4, an acquisition strategy for synthetic aperture is presented where the

aim is to decrease the acquisition for non-grid 2D arrays and enable real-time applications. In

chapter 5, spatial parameters created during the previous chapter are analysed and used to define
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a fitness function that is used with the simulated annealing algorithm to design sparse non-grid

2D arrays. Final considerations are made where the contributions of this work are highlighted

and future ideas given.
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2 FUNDAMENTALS AND LITERATURE REVIEW

In this chapter, the theoretical background used in this work is given and the recent

literature in sparse array design are reviewed.

2.1 ARRAYS

One strategy to generate an ultrasonic image is to use an array, a group of piezoelectric

elements, that converts electrical energy into vibration and vice-versa. The arrays are divided

into two groups: the arrays used to generate 2D images, such as the linear and the annular array,

and the arrays used to create 3D images, like the matrix array, the annular segmented array and

the Fermat spiral array (DRINKWATER; WILCOX, 2006).

The linear and annular arrays are illustrated in Figure 1, where d is the array pitch,

which is the distance between the centre of adjacent elements, a and L are the element width

and length of the linear array element, respectively. Both arrays generate 2D images, but the

difference between them is that the linear array allows beam steerring in the imaging plane, and

the annular array allows only the focal depth (DRINKWATER; WILCOX, 2006).

In this work, linear arrays are divided into three groups: the fully populated array (FPA),

which is an array where the pitch d has the maximum value of 0.5λ. The sparse periodic array

(SPA), where the pitch is higher than 0.5λ but equal to all elements, and the sparse aperiodic

array (SAA), where the pitches are not the same, and some of them are higher than 0.5λ.

Figure 1 – (a) Linear and (b) annular segmented array.

(a) Linear Array (b) Annular Array

Source: Adpated from (DRINKWATER; WILCOX, 2006)

Arrays used for 3D imaging have more design space, and different configurations are

proposed. The most intuitive way to place the elements in a 2D array is in a matrix (Figure 2

(a)), where the array elements are placed into a matrix shape that creates a grid. However,

different types of configurations result in images with considerable good contrast using fewer
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elements, such as the Fermat spiral (Figure 2 (b))(MARTÍNEZ-GRAULLERA et al., 2010),

segmented annular (Figure 2 (c))(MARTÍNEZ et al., 2003), and cross mills arrays (Figure 2

(d)) (MONDAL et al., 2005).

Figure 2 – (a) Matrix, (b) Fermat spiral, (c) segmented annular and (d) mills cross arrays.

(a) Matrix Array (b) Fermat Spiral Array

(c) Segmented Annular Array (d) Mills Cross Array

Source: Author

Both linear and 2D arrays, when increased in size and number of elements, require a

considerable amount of electronic and computational resources to operate. Depending on the

application and available resources, it is necessary to find alternatives to reduce the time to

acquire and generate an image or the manufacturing cost to produce an ultrasonic system. To

achieve this goal, it is necessary to understand different methods used to analyse ultrasonic

imaging systems, where one of these is the radiation pattern.

2.1.1 The radiation pattern

The Radiation Pattern is the energy irradiated by an element source or array (JENSEN,

2002). It can be simulated considering the far field and elements continuously excited with a si-

nus signal, referred to as the narrowband response, or considering different electrical excitation,

ideally the pulse excitation, which is the wideband response (CARDONE et al., 2001).

Although several ultrasonic applications in imaging occur in the near field and the array

elements are pulsed, the radiation pattern narrowband response is a modelling tool used to anal-

yse array response and its ability to generate images with high lateral resolution and contrast.

Moreover, this modelling tool aids in understanding the concepts of ultrasonic imaging. Con-
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sidering that a point source generates an omnidirectional acoustic wave, the acoustic pressure p

as a function of time t and radius R is described as (WOOH; SHI, 1999a):

p(R, t) =
(

p0

R

)
1
2

e j(ωt−kR), (1)

where ω is the angular frequency, and p0 is a function of the wavenumber k, derived from

the solution of the acoustic wave. Therefore, the acoustic pressure of an array with N sources

generators is given as the sum of pressures described in (1).

Figure 3 illustrates a linear periodic array with N elements and pitch (d) 0.5λ. Element i

has a distance Ri and angle θi to the point P, where the acoustic pressure (pi(Ri, θi, t)) is analysed

and calculated as:

Figure 3 – Pressure sum of a linear array at a point P(R, θ) considering the elements are point
sources.

Source: Author

pi(Ri, θi, t) =

(

p0

Ri

)
1
2

e j(ω(t−(i−1)∆τ)−kRi ), (2)

where 1 ≤ i ≤ N, ∆τ is the difference in time-of-flight of the wave propagating from element i

to the point P and its neighbour.

Considering that a triangle with vertices at element 1, element i and point P, the follo-

wing relationship between R and Ri is built:

Ri =
√

R2 + [(i − 1)d]2 − 2R(i − 1)d cos(π/2 − θ). (3)
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However, if the distance where the pressure is analysed is sufficiently farther than the

pitch d (far-field) and the lines Ri are considered parallel, (3) can be approximated as (WOOH;

SHI, 1999a):

Ri ≈ R − (i − 1)d sin(θ), (4)

and using (4) in (2), the following relationship is obtained:

pi(R, θ, t) =
(

p0

R

)
1
2

e j(ωt−kR)e− j(ω(i−1)∆τ−k(i−1)d sin(θ)), (5)

where the pressure of any element i is in function of R, θ and t.

Therefore, the total acoustic pressure is the sum of all pressures of the N elements, given

by:

P(R, θ, t) =
N

∑

i=1

wi pi(R, θ, t), (6)

where wi is an amplitude modulation used to change the radiation pattern response to achieve

the desired response, also known as apodization (SZABO, 2014).

Substituting (5) in (6), the following relationship is achieved:

P(R, θ, t) =
(

p0

R

)
1
2

e j(ωt−kR)
N

∑

i=1

wie
− ji(−kd sin(θ)+ω∆τ), (7)

defining ωθ = −kd sin(θ) + ω∆τ, (7) can be rewritten as:

P(R, θ, t) =
(

p0

R

)
1
2

e j(ωt−kR)
N

∑

i=1

wie
− jiωθ , (8)

and considering w[i] = 0 for i < [1,N], (8) can be written as :

P(R, θ, t) =
(

p0

R

)
1
2

e j(ωt−kR)
∞
∑

i=−∞
wie
− jiωθ , (9)

which the right part of the equation is a Discrete-Time Fourier transform (DTFT) of wi. Thus,

the DTFT of the apodization coefficients is equal to the radiation pattern of the linear array.

Solving (9), the energy irradiated by a linear array with uniform apodization (wi = 1,

1 ≤ i ≤ N ) can be written in the harmonic form as:

P(R, θ, t) =
(

p0

R

)
1
2 sin[((ω∆τ − kd sin(θ))/2)N]

sin((ω∆τ − kd sin(θ))/2)
e− j

(

ω∆τ−kd sin(θ)
2

)

(N−1)e j(ωt−kr), (10)
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and gives information about the energy irradiated from a set of emitters. Moreover, a normali-

zation at any arbitrary steering angle θs is given by:

H1(θ) =
∣

∣

∣

∣

∣

P(R, θ, t)
P(R, θs, t)

∣

∣

∣

∣

∣

. (11)

Substituting (8) in (11), the folowing relationship is obtained:

H1(θ) =

∣

∣

∣

∣

∣

∣

∣

∞
∑

i=−∞
wie− ji(ωθ−ωθs )

∣

∣

∣

∣

∣

∣

∣

, (12)

and using the relationship ∆τ = d sin(θs)/c, (12) has the following solution:

H1(θ) =
∣

∣

∣

∣

∣

sin((πd(sin(θS ) − sin(θ))/λ)N]
N sin(πd(sin(θs) − sin(θ)/λ)

∣

∣

∣

∣

∣

. (13)

Using linear arrays with 4, 8 and 16 elements, where the elements are equally spaced

with a 0.5λ pitch (FPA), the radiation pattern using (13) is illustrated in Figure 4(a).

In sparse array design, two features are used to evaluate the array performance in gen-

erating ultrasonic images, the main-lobe width (MLW), which is the angular length where the

main lobe is -6 dB and related to the lateral resolution of the images, and the peak side-lobe

(PS L), which is the maximum side-lobe peak related to artefacts and contrast of the ultrasonic

images (YANG et al., 2006; HU et al., 2018; HU et al., 2017; ZHANG et al., 2020).

In both features, it is desirable to have a low value. For MLW, increasing the array’s size

will reduce its value. However, using an FPA, the number of elements will increase, requiring

more resources. Sparse arrays are handy for this problem because a wider length size array can

be achieved using fewer elements. For PS L, one strategy to reduce its value is using a sparse

aperiodic array or apodization, as will be seen in this chapter.

In Figure 4(b), the radiation pattern of a linear array with 16 elements is illustrated

where three apodizations were used: Rectangular, Hamming and Hanning. As it can be seen, the

Hamming and Hanning apodizations decrease side lobes levels, with a trade-off with increasing

main lobe width (SZABO, 2014).

The radiation pattern can be also expanded to 2D arrays, where the elements are po-

sitioned on the x and y-axis. In this sense, instead of only considering the azimuthal angle,

the radiation pattern of a 2D array is obtained in both azimuthal (θ) and elevation angle (φ),

described as:

H1(θ, φ) =

∣

∣

∣

∣

∣

∣

∣

N
∑

i=1

wie
− jk(xi (cos(φ)−yi sin(φ)) sin(θ)−(xi cos(φs)+yi sin(φs)) sin(θs)

∣

∣

∣

∣

∣

∣

∣

. (14)
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Figure 4 – (a) Radiation Pattern of 4 (solid blue line), 8 (dash-dot red line) and 16 (dashed green
line) elements array. (b) Apodization of a 16 linear array with Rectangular (solid blue
line), Hanning (dash-dot red line) and Hamming (dashed green line) apodization.

(a) Radiation Pattern (b) Apodization

Source: Author

Figure 5 – Radiation Pattern of 256 elements matrix array with 0.5λ pitch.

Source: Author

Figure 5 illustrates the radiation pattern of a matrix array with 256 elements (16x16)

with a 0.5λ pitch that separates each element. In this figure, it is possible to see the main lobe

at the centre and the side lobes.

The radiation pattern presented, so far, is created considering the narrowband response.
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In order to obtain the wideband radiation pattern, which is a response close to ultrasonic imag-

ing systems, it is necessary to consider the ultrasonic pressure pulse transmitted by a single

element. Using the array impulse response, the acoustic pressure in wideband response is given

by (CARDONE et al., 2001):

p(θ, θs, t) = g(t) ∗ h(θ, θs, t), (15)

where the asterisk denotes convolution, g(t) the ultrasonic pressure pulse and h(θ, θs, t) is the

array impulse response given by (CARDONE et al., 2001):

h(θ, θs, t) =
N

∑

i=1

wiδ

(

t −
id(sin(θ) − sin(θs))

c

)

, (16)

and δ() is the Kronecker Delta function.

The number of parameters in the equation can be reduced by considering the sinusoidal

relationship as a real value u = sin(θ) − sin(θs), therefore (16) becomes:

h(u, t) =
N

∑

i=1

wiδ

(

t −
iu

2 fc

)

, (17)

where fc is the centre frequency of the transducer.

The ultrasound pulse transmitted by a single array element g(t) can be simulated as a

Gaussian-envelope sinusoidal pulse, which can be given by (CARDONE et al., 2001):

g(t) = u0e
π2 BW2 f 2

c (t−η)2
1.2 ln 10 sin(2π fct), (18)

where u0 is a constant, BW the -6 dB relative fractional bandwidth, and η = 1.5/(BW fc).

For 2D apertures, the radiation pattern wideband response is calculated using the follo-

wing equation (TURNBULL; FOSTER, 1991):

p(~r, ~r f , t) = g(t) ∗ h(~r, ~r f , t), (19)

where h(~r, ~r f , t) is the impulse response of the 2D array, ~r it a vector with the azimutal angle and

radious (θ, φ and R) where the pressure is sampled and ~r f is the focus position of the radiation

pattern.

Figure 6 (a) illustrates the FPA wideband radiation pattern with 4, 8 and 16 elements

linear array, respectively. Figure 6 (b) illustrates the radiation pattern for the 256 matrix array.

As it can be seen, the representation of the side lobes is attenuated in both images, compared to

linear and 2D FPA.
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Figure 6 – Wideband response of (a) linear array with different numbers of elements and (b)
256 elements matrix array with 0.5λpitch.

(a) Linear Array (b) 2D array

Source: Author

All simulations presented consider the array elements as point sources, where the ir-

radiated energy is omnidirectional. Real elements do not behave like this as they have finite

dimensions. The energy irradiated by an array element can be calculated and included in the ra-

diation pattern to give a better approximation of the practical performance of the array (WOOH;

SHI, 1999b).

In Figure 7, the dimensional array element is illustrated, where it is possible to see from

a different perspective the dimension a illustrated in Figure 1 (a). x is the distance between the

origin and a point of the element.

Figure 7 – Pressure of an array element with width a.

Source: Author

Using the Huygens’ principle, which says that every point on the radiation surface is

the origin of an outgoing spherical wave (JENSEN, 2002), the energy of a rectangular array

element with width a and length L is calculated as:
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p(R, θ, t) =
ˆ a

0
dp, (20)

where dp is the infinitesimal pressure contribution of the element with width a, written as:

dp =

(

p0

R

)1/2

e j(ωt−kR)dx, (21)

and the dx in the integral means an infinitesimal distance of the array width illustrated in Fi-

gure 7.

Considering that the element’s width a is smaller than the distance R′ (Ri >> a), Ri can

be aproximated using a similar relationship used in (3) as:

Ri =
√

R2 + x2 − 2Rx cos(θ) ≈ R − x sin(θ), (22)

and (20) can be written as:

p(R, θ, t) =
ˆ a

0
dp =

(

p0

R

)1/2 sin(ka sin(θ/2))
k sin(θ/2)

e−
jka sin(θ)

2 e j(ωt−kR)

=

(

p0

R

)1/2

sinc(ka sin(θ/2))e−
jka sin(θ)

2 e j(ωt−kR),

(23)

where normalizing the pressure at a max angle (θ → 0) gives the directivity for a single element

as (WOOH; SHI, 1999a):

H2(θ) =
∣

∣

∣

∣

∣

sin(πa sin(θ)/λ)
πa sin(θ)/λ

∣

∣

∣

∣

∣

, (24)

and considering the length L of the element, the directivity is given as (WOOH; SHI, 1999b):

H2(θ, φ) =

∣

∣

∣

∣

∣

∣

sinc

(

πa sin(θ) sin(φ)
λ

)

sinc

(

πL sin(θ) sin(φ)
λ

)
∣

∣

∣

∣

∣

∣

. (25)

Figure 8(a) illustrates the irradiated energy by an element for different widths. As it can

be seen, punctual elements (a/λ = 0) irradiate the energy in all directions. In contrast, as the

element size increase, the irradiated energy is more concentrated at smaller angles, in front of

the element.

This directly affects the radiation pattern narrowband response of the array, where the

energy irradiated by an element modulates the energy irradiated by the array. In Figure 8(b)

this behaviour can be seen comparing the radiation pattern considering an array with 32 punc-

tual elements (illustrated in blue) and the radiation pattern considering the same amount of

elements but with elements with width a = 0.5λ. It is important to highlight that, in ultrasonic

applications, elements are pulsed excited, and the wideband response would be a more reliable
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Figure 8 – (a) Energy irradiated by an element with different a/λ values: (b) Radiation Pattern
narrowband response modulated by the directivity of the element with a a = 0.5λ
width.

(a) H2(θ) (b) Radiation Pattern

Source: Author

simulation. However, the narrowband response illustrates the worst-case scenario, highlighting

the arrays’ characteristics and helping to explain the characteristics of the arrays’ responses.

Although the energy irradiated by a finite dimension element is normally not taken into

account when designing sparse arrays, it is good to know how the elements behave experimen-

tally. In this way, all radiation pattern simulations presented in this work consider punctual

elements.

2.1.2 Sparse array

Sparse arrays are an alternative to increasing the lateral resolution without increasing

the electronic complexity. To understand the consequences of using sparse arrays, the narrow-

band radiation pattern can be analysed considering punctual elements. Figure 9 illustrates four

radiation patterns of a 32 elements arrays where the pitch are different for each case. In (a),

the radiation pattern generated from an array with a pitch equal to 0.5λ (32 elements FPA) has

the biggest MLW, and the side lobes’ intensities decrease as it gets away from the main lobe.

When the pitch increases to 0.75λ (b), the MLW decreases from 2.2◦ to 1.5◦, but the side lobes

intensities stop decreasing as it gets far from the main lobe and increase at the extreme angles.

These lobes are called grating lobes, which are caused by the waves of the array summing in

unwanted directions.

In Figure 9(c), the pitch is increased to 1λ, and it is possible to see that the grating



40

lobes at ±90◦ have the same intensity as the main lobe. In (d), the pitch is 2λ, and the radiation

pattern has additional grating lobes at ±30◦. In contrast, the MLW in these cases reduces to

1.1◦ and 0.6◦, respectively. As it can be seen, increasing the size of the array by just increasing

the pitch will reduce the size of the MLW leading to better lateral resolution. However, the

energy irradiated by the element will sum in different regions, which might result in images

with high-intensity artefacts that can lead to misinterpretations of the images.

Figure 9 – 32 elements radiation pattern considering a pitch equal to: (a) 0.50λ, (b) 0.75λ, (c)
1λ and (d) 2λ.

(a) Radiation Pattern d = 0.5λ (b) Radiation Pattern d = 0.75λ

(c) Radiation Pattern d = 1λ (d) Radiation Pattern d = 2λ

Source: Author

One way to decrease the intensity of the grating lobes is by breaking the periodicity of

the elements by using sparse aperiodic arrays, where the pitch of the elements will be different

from each other. Figure 10 (a) illustrates two sparse array configuration. In red dots, a sparse

aperiodic array where 16 elements were randomly removed from a 32 FPA. In green dots, 16

elements sparse periodic array of 1λ pitch, which has the same length as the 32 FPA. Figure 10

(b), illustrates the radiation pattern created from these sparse configurations where the MLW
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and PS L are highlighted. It is possible to see a reduction in the grating lobes’ intensity with an

exchange of the rise of side lobes. Moreover, the MLW is slightly lower for the sparse periodic

array as it has the same length as the 32 FPA.

Figure 10 – (a) Fully populated array (blue dot), sparse aperiodic array (red dot), sparse periodic
array (green dot) and the missing elements to complete a fully populated array. (b)
the radiation pattern narrow band response of the presented arrays with the MLW

and PS L highlighted.

(a) Arrays (b) Radiation Pattern

Source: Author

Works such as Goss et al. (1996) propose to randomly select 64 in 108 elements in a

2D sparse array to obtain a sparse array configuration. Although the focus of the work is to

use arrays in focal heating, the study of the radiation patterns presented shows a reduction in

the intensity of the grating lobes, but these random configurations produce sparse arrays with

unpredictable performance as the side lobes summed in different regions.

Search mechanisms can be a better strategy to find sparse array configurations. They

are composed of three parts: the codification process, where the problem is encoded into a

mathematical representation. For example, the FPA illustrated in Figure 10 (a) can be encoded

as a binary vector with 32 positions. In this case, it will be a vector with 32 ones as the ones

indicate that the elements are used in the imaging process. In the sparse array illustrated in

Figure 10 (a), the 32 binary vectors will have zeros indicating the elements not used and ones

indicating that the elements are used.

The second part is the fitness function (FF), a mathematical function that translates the

encoded configuration into a number. The FF translates the sparse configuration to how well

it can be to image. In this way, two configurations that have different FF can be compared,

and with this value, it is possible to say which one is better to image. Creating this FF is a
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Table 1 – Comparison between search algorithm using the fitness function proposed by Trucco
(1999).

Metaheuristic Fitness of the best
Simulated Annealing 34,714
Genetic Algorithm 65,378
Particle Swarm Optimization 29,152
Harmony Search 34,823
Whale Optimization Algorithm 70,455
Bat Optimization Algorithm 31,505
Arithmetic Optimization Algorithm 28,976

difficult task, as most of the time it is necessary to quantify an image or a signal with different

amplitudes into a number. The codification strategy and the FF are used in a search engine that

will search different configurations aiming to minimize or maximize the FF. The search engine

is called metaheuristics, and more information is provided in Appendix A.

One of the classic algorithms used for this problem is simulated annealing (KIRKPA-

TRICK et al., 1983). Murino et al. (1996) proposed using the energy of the narrowband radia-

tion pattern response as a fitness function and use simulated annealing to find configurations of

sparse linear arrays and also the apodization of the elements. Trucco (1999) proposed a similar

strategy to optimize both the elements in 2D sparse arrays and the weight coefficients (apodiza-

tion). In that work, the FF proposed by the author uses the mean squared error of the radiation

pattern, where one signal is the radiation pattern of the sparse array, and the other is the desired

radiation pattern, which is a matrix array where the elements has 0.5 λ pitch. In both strategies,

the positions of the elements are predefined, which creates a grid, and the search engines select

which elements are going to work.

The search algorithm does not guarantee that the best result is found, and may vary

among different algorithms. For example, the Genetic Algorithm (HOLLAND, 1992), Parti-

cle Swarm (KENNEDY; EBERHART, 1995), Harmony Search (ZONG et al., 2001), Whale

Optimization (MIRJALILI; LEWIS, 2016), Bat Optimization (YANG, 2010) and Arithmetic

Optimization Algorithm (AOA) (ABUALIGAH et al., 2021) were implemented to work with

the fitness function proposed by Trucco (1999). Table (1) gives the FF of the best sparse array

found using the respective algorithm. As it can be seen, the results found by the algorithms vary

considerably, with the AOA finding the best result.

Trucco (2002) used this same optimization logic involving simulated annealing to find

sparse linear array configurations. However, the author created a fitness function based on the

radiation pattern wideband response. The author claimed the wideband response is closer to

real ultrasound applications and, therefore, better layouts could be achieved. Nevertheless, the

author observed that processing the wideband response is time-consuming and getting valuable

information from the wideband response is more challenging.
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In these works, a common problem is to control the number of elements selected in

the array. The way that the search problem is constructed, it is required to add a penalization

function in the FF to limit the number of active elements selected in the array during the search

problem construction. This penalization function is a conditional statement inserted in the al-

gorithm that if the current configuration analysed has more active elements than the predefined

at the beginning of the search, an arbitrary constant is added to the fitness value. Although the

penalization strategy can limit the number of elements selected in the sparse array, it is difficult

to tune the penalization factor.

A different optimization algorithm was used by Haupt (1994), where the author used

the genetic algorithm to find sparse configurations for linear and matrix arrays. Although the

work is for antennas, the fitness function is based on the radiation pattern narrowband response,

which shares the same theory as ultrasonic arrays, and it can be used as an example. The

author proposes to use the peak sidelobe (PSL) as a fitness function. The genetic algorithm

has the advantage in comparison to simulated annealing because the algorithm works with bi-

nary representation, so 0 is used to illustrate that the element in a certain position is turned

off and 1 when the element is on. For example, the binary representation of the sparse array

illustrated in Figure 10 (a) would be [0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0

, 0, 1, 1, 0, 1, 1, 1, 1]. In the work presented by Haupt (1994), a penalization strategy was not

used, and for a 200 element FPA and a 10x20 matrix array, the author achieves a 25% reduction

in the number of elements for the linear array and 46% element reduction in the 2D array.

The genetic algorithm was also used by Yang et al. (2006) to optimize the linear array.

The FF proposed by the authors is based on the radiation pattern narrowband response where

the two pieces of information are extracted from it: the main lobe width (MLW) and the peak

sidelobe (PSL). The two features are combined using a Scalarization Method, which is a multi-

objective strategy (MURATA et al., 1996). Equation (26) illustrates the fitness function used by

the authors.

FF = k1MLW + k2PS L, (26)

where k1 and k2 are the weights used to focus the search. If the operator wants to focus on better

lateral resolution, a higher value in k1, with respect to k2, would be defined.

The equation (26) has been used in different works to find sparse linear array configura-

tions. Hu et al. (2017) proposed an imaging algorithm that corrects the divergence of the sound

beam and uses the same methodology proposed by Yang et al. (2006). The difference from the

previous study is that the authors only find sparse emitters configurations and used a 32 FPA as

a receiver.

In the article published by Hu et al. (2018), the authors propose the use of a different

variation of the genetic algorithm called Almost Different Sets Genetic Algorithm with (26) to
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find emitters and receivers sparse linear arrays configurations and also proposed an algorithm

to enhance the ultrasonic image by post-processing it interpolating its pixels

Different algorithms were also used, Zhang et al. (2020) proposed to adapt the particle

swarm optimisation algorithm (PSO) into a binary search mechanism and used the same FF

described in (26) to find linear sparse configurations.

For 2D arrays, metaheuristics have been used to design the sparse arrays. Trucco (1999)

uses simulated annealing algorithm to select elements from 3 pre-defined matrix arrays with

112, 200 and 3228 elements. The simulation method used by the author is the radiation pattern

narrowband response, where the FF created is the error between the radiation pattern generated

by a sparse array and the pre-defined matrix array. Moreover, a penalization function is added

to control the elements selected from the matrix array. Chen et al. (2011) refined this FF by

changing the penalization function and expanding the analysis for multiple foci to find arrays

with the same quality as Trucco (1999) but with fewer selected elements.

In the article published by Diarra et al. (2013), this fitness function is used with a sim-

ulated annealing-based algorithm to design 2D sparse array for non-grid arrays, where the ele-

ments are placed anywhere in the space. The authors achieved the same lateral resolution with

reduced side lobes intensities compared to the proposed works. One drawback of this strategy

is the manufacturing process. Although CMUT technology enables the array manufacturing

(ORALKAN et al., 2003), the cost of doing it is high which is necessary to increase produc-

tion to compensate for the cost. Later in the same research group, Roux et al. (2017) propose

a new fitness function based on the multi-depth focal points of the radiation pattern wideband

response, which needs to define the element impulse response and might limit the sparse array

to work under a specific setting.

The optimization algorithms are used to find sparse array configurations using an FF

that evaluates the configurations. Another strategy used in array design consists in evaluating

the coarray shape to create different emitter and receiver sparse arrays.

2.1.3 Coarray

The Coarray or effective aperture is a representation of a receiver aperture that would

produce an identical image if the transmit aperture was considered a point source (omnidirec-

tional radiation) (GEHLBACH; ALVAREZ, 1981). It is a mathematical tool that merges the

array used for emission and reception and can be used to get information about the ability of

the array imaging. By calculating the DTFT of the coarray, the two-way or pulse-echo radiation

pattern narrowband response is calculated, which is the product of the radiation pattern of the

emitting array with the receiving array (LOCKWOOD et al., 1996a).

The coarray is defined as the convolution of the emitter and receiver apertures (GEHL-

BACH; ALVAREZ, 1981; LOCKWOOD et al., 1996a; LOCKWOOD et al., 1996b; KARA-
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MAN et al., 2009). Considering that the array elements are impulses in the space, each coarray

element is the product of an emitting and receiving element of the array, which is also an im-

pulse, and the coarray position is the sum of the emitting position with the receiving position. In

this way, the coarray can be calculated as a set of its positions, where each position is calculated

as:

Crt = { ~Cer = ~ee + ~er} ∀ ~ee ∈ ARe, ~er ∈ ARr, (27)

where ~Cer is a coarray element generated by the respective emitter e and the receiver r, ARe

the position set of the emitter elements, ARr the position set of the receiver elements, and

ei = (xi, yi), which is the XY position in the plane.

Figure 11 illustrates two cases of Crt. In both cases, as the linear array is analysed, y is

zero. In (a), the convolution of the apertures ARe and ARr generates a coarray with a triangular

shape. The elements in the linear arrays are in one grid and the positions on the coarray overlap.

In (b), one element of ARr is displaced by 0.3λ. In this example, the coarray elements do not

overlap, where the first row of Crt gives the positions of the coarray elements considering the

~e1 of ARr and the second row gives the positions of the ~e2 of ARr.

The weight of each coarray element is the number of emitter/receiver pairs that are

coincident at the same position, and the analysis of its shape can be used to estimate the dy-

namic range and lateral resolution of the imaging system (DRINKWATER; WILCOX, 2006;

HOCTOR; KASSAM, 1990). For 2D non-grid arrays, such as the Fermat spiral and annular

segmented arrays, this superposition is very rare to occur, turning the analysis of its shape diffi-

cult. In this way, this definition of coarray is important as it will be further used to analyse the

coarray elements’ distance and identify elements that are closer enough to be considered in the

same position.

Figure 11 – Illustration of Crt. (a) the array elements are periodically spaced (in a grid). (b)
One reception element is shifted by 0.3.

(a) Same position

(b) Shifted Element

Source: Author

Considering a linear FPA with 32 elements, where a rectangular apodization is used,

and all elements are used for transmission and reception (Figure 12(a)), the coarray Crt ge-
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nerated has 1024 elements where summing the elements that overlaps has a triangular shape

(Figure 12(b)). The radiation pattern narrowband of the transmit array (ARe) and the Coarray

(Crt) are illustrated in Figure 12(c), where the two-way radiation pattern has a lower MLW,

3.20◦ in comparison to the radiation pattern of the emitter FPA (4.39◦), and lower side lobes

levels.

Figure 12 – (a) Transmit and Receiver Linear FPA with 32 elements. (b) the coarray formed
from the two arrays with triangular shape with all elements respecting a pitch 0.5λ.
(c) the radiation pattern of the transmit array and the coarray (two-way radiation
pattern).

(a) (b)

(c)
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The analysis of the coarray is important and was used to design sparse array configura-

tions. Lockwood et al. (1996a) used two linear sparse arrays, one working in emission and the

other working in reception to create a coarray where the elements have a 0.5λ pitch, although

the shape of the coarray created is uneven. The spacing between the elements is based on the

Vernier scale, the same scale existing in rulers and pachymeters.

Figure 13 (a) illustrates two sparse periodic arrays created based on the Vernier scale,

one used for emission and the other for reception. The transmitting array has a 1.5 λ, and the

receiver has a 1λ pitch. These two configurations are periodic and have grating lobes with

the same intensity as the main lobe in the radiation pattern narrowband response. However,

the resultant coarray illustrated in Figure 13 (b) resembles a triangular shape and the elements
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respect the pitch of 0.5λ. The two-way radiation pattern is illustrated in Figure 13 (c), where it

is possible to see the reduction in the grating lobes intensities.

Figure 13 – (a) Sparse Transmit and Receiver Linear arrays created based on Vernier distri-
bution, (b) the coarray created where it has the triangular shape, respects a pitch
0.5λ but it has adjacents elements that alternate the amplitudes and (c) the two-way
radiation pattern of the coarray created.

(a) (b) (c)

Source: Author

Another example of using sparse periodic arrays to create a desired coarray is given

by Mitra et al. (2010), where the authors used the concept of factorization of polynomials to

place the emitter and receiver elements of arrays. The problem in the arrays created using this

methodology is the concentration of emitters on one side of the array, which unbalances the

energy irradiated and might generate non-linear artefacts in the images.

For bidimensional arrays, a 2D matrix array with 16 × 16 elements is illustrated in

Figure 14(a) as an array example. Figure 14(b) illustrates the coarray formed from the matrix

array. As it can be seen by analysing the colorbar, the coarray has a square-based pyramidal

shape, similar to the example presented using linear arrays (Figure 12(b)).

Following the strategy to use periodic sparse arrays and create desired coarrays, Lock-

wood et al. (1996b) also proposed the use of the Vernier scale to design sparse planar arrays

aiming at a desired coarray shape. Karaman et al. (2009) proposed four strategies using differ-

ent emitter and receiver arrays to create a minimum redundancy coarray, where the elements of

the coarray avoid overlapping. Figure 15 illustrates one example presented in that work. In (a),

the elements of the emitter array are placed at the vertical at the extreme boundaries, with 0.5λ

pitch. In (b), the elements of the receiver array are placed horizontally at the extreme bound-

aries, with 0.5λ pitch. The coarray generated from these two arrays is illustrated in Figure 15

(c), where it is possible to see the majority of the elements have amplitude one (in white colour),

which indicates the minimum redundancy.

Although this strategy almost creates a coarray in which elements are unitary, this anal-

ysis is restricted to matrix arrays, where the elements overlap and can be summed. In arrays

where the elements are in a non-grid, for example, Fermat spiral arrays (Figure 2(b)), the coar-
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Figure 14 – (a) Matrix array with 256 elements (16 × 16) where the adjacent elements in the x-
axis and y-axis have a pitch equals to 0.5λ (λ = 1[mm]) and the elements diagonally
adjacents have a pitch equals to 0.70λ. (b) The coarray is created from the matrix
array which has a pyramidal shape.

(a) (b)

Source: Author

ray elements do not overlap and the redundancy cannot be analysed in the same way.

Figure 15 – An example of the minimum redundancy array (KARAMAN et al., 2009) where
(a) 30 elements are disposed of two vertical lines and (b) 30 elements are disposed
of two horizontal lines where the elements in the lines have a pitch equal to 0.5λ
(λ = 1[mm]). (c) the coarray is generated from these two apertures where the
majority of the elements have amplitude one.

(a) Emitter Array (b) Receiver Array (c) Coarray Generated

Source: Author

The coarray is a mathematical tool that can be used to evaluate sparse configurations.

It is considered a spatial apodization as the two-way radiation pattern is the Fourier transform

of the amplitudes of the coarray (LOCKWOOD et al., 1996b). Another alternative to evaluate

sparse configurations is the point spread function (PSF), which is the simulation of a reflector

point in the medium and gives information about how a sparse array can image. Before ex-
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plaining how the PSF is generated, which will be done in section (2.2.3), first, it is necessary to

know how an ultrasonic image is generated.

2.2 ULTRASONIC IMAGING

The basic principle of ultrasonic images is to use a transducer with a single element to

emit an ultrasonic wave in the medium, and, in the case of reflection (change of density), the

reflected mechanical wave is converted to an electrical signal by the same transducer, amplified,

and then sampled. By doing this operation in different areas, creating a sweep, the acquired

signals can be used to create an image.

Figure 16 illustrates two simple imaging strategies. In (a), where the B-scan is repre-

sented, the transducer is shifted and activated in the x-axis. The irradiated wave reflects at the

end of the object or the hole. With the acquired data, a brightness image can be created in the x

and z axis, as illustrated in Figure 16 (b). The C-scan is illustrated in (Figure 16(c)) where the

transducer shifts in the x and y region. In this case, a section of the image in a certain depth is

generated (Figure 16(d)) .

The use of a single transducer to generate images is a simple example to understand the

principle of ultrasonic images. In practice, images generated by a single element would have

low lateral resolution and contrast. Moreover, the element needs to be mechanically moved,

which decreases the frame rate and creates a margin for positioning errors. Arrays are used to

overcome these problemss, and two main strategies are used for data acquisition and imaging:

the Phased Array and the Synthetic Aperture.

2.2.1 Phased array

In Phased Array systems, the elements in the array can be pulsed independently, and

depending on the relative phases of element excitations, the ultrasonic beam can be steered or

focused. The most common inspection modality is the B-scan (Figure 17(a)), where a sub-

set of elements is used to inspect the object, and the reflected signals are plotted as intensity

(DRINKWATER; WILCOX, 2006). This inspection modality is similar to the monolithic il-

lustrated in Figure 16(a). However, the difference that the scan is done electronically and the

mechanical movement is reduced.

A different inspection modality is created when delays in the activation of the elements

are applied. Figure 17(b) illustrates the focused B-scan, where the elements are fired with delays

between each other and the beam focused in a region. The delays can also be used to create a

sector scan (Figure 17(c)), where the beam is steered at an angle and objects can be scanned at

positions not directly in front of the array.

One drawback of Phased Arrays is that the elements need to work in parallel, increasing
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Figure 16 – Simple imaging system using a single element transducer. (a) representation of the
imaging system where the transducer is shifted only in the x axis and the resulting
image (b) created in the x and z-axis. (c) An imaging strategy where the transducer
moves in x and y-axis. (d) the segmented image generated in a different depth.

(a) Imaging system (b) Image generated in x and z axis

(c) Imaging system
(d) Image generated in x and y axis

in a specific depth

Source: Author

electronic complexity. An alternative to overcome this problem is the use of the Synthetic

Aperture technique.

2.2.2 Synthetic aperture

Synthetic aperture is an imaging technique based on the synthetic aperture radar, where

the reflected electromagnetic wave of a region is sampled in different positions, and an image

of a region is created (JENSEN et al., 2006). Figure 18 illustrates the working principle of this

technique, an antenna is attached to the aircraft that moves above an area. The antenna emits

and receives the waves in different positions and the data acquired is processed to create an

image.

In synthetic aperture, the elements of the array are sequentially emitted, which copies

how the antenna is used in Figure 18. An illustration of the SA technique is given in Figure 19.

At the first stage, element 1 emits, and all array elements receive. Afterwards, element 2 emits,

and all array elements receive. This process is repeated for all N elements, which creates a
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Figure 17 – Phased Array inspection modalities. (a) B-scan. (b) Focused B-scan. (c) Sector
Scan.

(a) B-Scan (b) Focused B-Scan

(c) Sector Scan

Source: Author

Figure 18 – Synthetic Aperture Radar.

Source: Author

dataset with the echoes of all combinations of emitters and receivers, namely full matrix capture

(FMC) (HOLMES et al., 2005).

Figure 19 – Synthetic Aperture.

Source: Adapted from Jensen et al. (2006)

After the process of signal acquisition, an algorithm needs to be used to create an ul-
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trasonic image, where the gold standard algorithm is called Total Focusing Method (TFM)

(BANNOUF et al., 2013). This algorithm consists of applying delays and summing signals

samples. Equation (28) gives the mathematical operation to calculate the TFM:
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where I(x, z) is the envelope of the amplitude image at a given (x, z) position, wer the apodiza-

tion, ser(t) the ultrasonic signal related to the emitter e and receiver r, ŝer the Hilbert transform

of ser(t), and τer(x, z) the time of flight from the emiter e to the pixel (x, z) back to the receiver

r.

Figure 20(a) illustrates how the TFM algorithm is calculated. The image area is discre-

tised in a grid in the x, z plane, and the amplitude of the image is calculated at all points. At each

point, the Euclidian distance from the emitter element e to a point in the grid (x, z) is calculated

and summed to the distance from the point (x, z) to the receiver element r. This value is then

divided by the velocity of the sound in the medium (c) to find the time of flight τer. Afterwards,

the respective amplitudes at the time τer are summed.

Figure 20 – Total Focusing Method (TFM). Representation in (x, z) grid (a), and in (r, θ) grid
(b).

(a) TFM (x, z) (b) TFM (R, θ)

Source: Author

Equation (28) gives the TFM calculate in respect to cartesian coordinates, which can be

changed to polar using the cosine rule (Figure 20(b)). In this case, instead of using the notation

I(x, z), I(R, θ) is used, where R is the radius and θ the angle that the image is calculated.

The synthetic aperture technique reduces the electronic complexity and system cost as

the emission and reception can be multiplexed. At the minimum, it is only necessary one Ana-



53

log to Digital (A/D) converter, but, in exchange, the acquisition time increases as N2 emissions

are required. This long-duration acquisition time might turn impractical for the use of this

technique; therefore, the solution is to use more A/D converters and add multiplexers to en-

able several receivers to work in parallel. However, if the number of array elements increases,

followed by the number of A/D converters and multiplexers, the system cost and data volume

escalate at an unfeasible level.

The sparse array is one solution for this problem, where some elements are placed in

a large area. However, there is another alternative. Some emitters/receivers combinations can

be removed from the acquisition process, which creates an acquisition strategy different from

FMC. With fewer combinations of emitters and receivers, the number of elements in the array

can increase, covering a larger area, and the number of receiver channels working in parallel

can be managed, which helps to remain the system cost and data volume at an acceptable level.

2.2.3 Point Spread Function

A different strategy to analyse the arrays’ ability to generate an image is the Point Spread

Function (PSF). In this method, a point reflector is placed in space and, using simulated data, the

ultrasonic image is generated (DRINKWATER; WILCOX, 2006). The data set of the combina-

tions of emitters and receivers can be simulated by time-shifting the electrical input response of

the transmitting element to the time of flight of the combination of emitter and receiver element.

In Figure 21(a), an electrical input response defined using equation (18) is illustrated. In this

example BW = 0.5, u0 = 1, fc = 3.5 MHz, and fs = 35 MHz. where fs is the sample frequency.

The shift operation can be done in different ways, for example, the electrical signal g(t)

can be convolved with a time-shifted impulse δ(t − τer), or multiplied by an exponential in the

frequency domain. Another alternative, used in this work, is to time-shift (18), which will be

written as:

g(t − τer) = u0e
π2BW2 f 2

c (t−η−τer)2

1.2 ln 10 sin(2π fc(t − τer)), (29)

where the electrical input signal shifted at the time τer = 9µs is illustrated in Figure 21(b).

The shifted signals are calculated for all combinations of emitters and receivers that are

going to be used for imaging, and the data set is created. Afterwards, an algorithm is used to

generate the PSF. Figure 22 illustrates the PSF of a FPA with 32 elements, where the point

reflector is placed at x = 0 and z = 32λ. In (a) the image angle vary from −90◦ to 90◦. As the

array is symmetric, it is only necessary to generate half of the angles (from 0◦ to 90◦). Figure 22

(b) illustrates only the half of the image that carries the same information as the full image. This

strategy can be done only in symmetric arrays and is useful to reduce the simulation time.

Figure 23 illustrates three cases of PSF created using only half of the image. (a) is the
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Figure 21 – Data set simulation. (a) electrical input response. (b) shifted signal to the time of
flight (9µ).

(a) Electrical input response (b) Shifted signal

Source: Author

Figure 22 – PSF of an FPA with 32 elements. (a) Image generated from −90◦ to 90◦. (b) as
the array is symmetric it is only necessary to generate half of the image (from 0◦ to
90◦).

(a) Full Image (b) Half Image

Source: Author

PSF of a FPA with 32 elements; (b) is the PSF of a 16-element sparse periodic array (SPA) with

λ pitch, and (c) is the PSF of an 8-element SPA with 2λ pitch. The point reflector remained

the same size for all PSF, as the arrays have the same length. The number of signals processed

and mathematical operations reduced from 1024 to 256 and 64, respectively, which decreases

the time to generate images and resources. However, there is an increase in the intensity of the

artefacts caused by the grating lobes.

Figure 23(d) illustrates the normalized mean in the axial direction of the PSFs. To create

this graph, the PSF is stored in a matrix where the lines correspond to the radii R of the image

and the columns of the angles θ. At each θ, the amplitudes of the radii are summed, resulting in

a vector that is then normalized. It is possible to see an increase in the artefacts’ intensity as the

lateral resolution remained the same.

The energy concentrated in a region outside the point reflector is distributed by breaking
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Figure 23 – PSFs of (a) FPA with 32 elements, (b) SPA with 32 elements a pitch λ and (c) SPA
with 32 elements and pitch 2λ. (d) normalized sum of the amplitudes.

(a) FPA 32 elements (b) SPA 32 elements pitch λ

(c) SPA 32 elements pitch 2λ
(d) normalized sum of the amplitu-

des

Source: Author

the periodicity of the elements. Figure 24 (a) illustrates a sparse array where 16 elements

are selected from a grid with 32 positions that correspond to a FPA. The 32 elements sparse

aperiodic array is created by mirroring the selected elements and, in Figure 24(b), the PSF of

the sparse array is illustrated. The energy is not concentrated in an area as in Figure 23(b)

and (d), but it spreads in the area beside the point reflector. This energy interferes with image

quality by increasing the artefact’s intensity. In this way, it is interesting to find a sparse array

configuration that has improved lateral resolution with low energy besides the point reflector.

2.3 COMMENTS

In this chapter, the background to understand how arrays are used to create an ultra-

sonic image is given. The differences between FPA, sparse periodic and aperiodic arrays are

presented, and the benefits of using sparse arrays to increase the speed to generate an image

in exchange for image quality are discussed. As it could be verified, different combinations

of sparse arrays can be obtained, making it impossible to test all the combinations. In this

sense, there is a need to define strategies that find sparse array configurations while reducing
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Figure 24 – (a) a sparse array created by selecting 16 elements in a grid corresponding to a 32
FPA. (b) the PSF of the sparse array where the energy besides the point reflector is
not concentrated in a specific area.

(a) 16 Sparse Aperiodic Array
(b) PSF of the Sparse Aperiodic Ar-

ray

Source: Author

the corresponding drawbacks. Moreover, the synthetic aperture technique requires a series of

acquisitions combining all the emitter and receivers elements of an array. To reduce the acqui-

sition time and decrease the time to generate an image, some emitters/receivers combinations

can be removed from the acquisition process.
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3 NEW STRATEGY FOR LINEAR SPARSE ARRAY DESIGN

In this chapter, the radiation pattern narrowband response fitness function (RP FF),

which is the sum of the peak side-lobe (PSL) and main-lobe width (MLW), is used in dif-

ferent search algorithms. A new codification method for sparse linear arrays enables using

search algorithms designed for continuous search values that found configurations with lower

FF than using binary codification. The sparse arrays found are analysed, and inconsistencies

in the results will lead to the development of a new fitness function (FF) based on the Point

Spread Function (PSF) and based on the energy and entropy analysis. Then, this new FF is used

in different search algorithms to analyse their performance in the sparse linear array design.

Afterwards, the sparse configurations found using the radiation pattern fitness function and the

proposed FF will be used to create a phantom image, which is a 128-element Fully Populated

Array (FPA) imaged the phantom using the synthetic aperture technique acquiring a 128x128

FMC. Then, the sparse array images of the phantom were created using only the respective data

of the FMC.

3.1 FITNESS FUNCTION BASED ON THE RADIATION PATTERN AND SEARCH AL-

GORITHM ANALYSIS

The RP FF was defined in Chapter 2, where it is the sum of the main lobe width (MLW)

with the peak side lobe (PSL). It is rewritten in (30) as:

FF = k1MLW + k2PS L, (30)

where the weights k1 and k2 are set to 1 to create a balance between MLW and PS L.

This RP FF has been used in different works to evaluate sparse configurations (YANG

et al., 2006; HU et al., 2017; HU et al., 2018; ZHANG et al., 2020), whereas Genetic Algori-

thm and Binary Particle Swarm were used as a search engine. Moreover, different algorithms

have also been used to find sparse arrays, such as Simulated Annealing (TRUCCO, 1999) and

Harmony Search (YANG; KIANG, 2015). In all cases, the weights k1 and k2 have been set to 1.

The search algorithms can be divided into 3 parts: the optimization codification, where

a real problem is codified into a mathematical representation; the fitness function (FF), which

will take a codified solution of the problem and evaluate it; and a search engine that will change

this solution to optimize it and find better solutions with lower FF. In the sparse linear array

optimization problem, the common method to represent the arrays is using the binary represen-

tation, where each position of this binary vector corresponds to an array element. For example,

a vector with 128 positions filled with ones codes a 128 FPA, and a sparse array can be created

by changing some of these ones to zeros. This creates a grid of 0.5λ where the elements will be

selected.
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This codification strategy limits the type of search algorithms that can be used. For ex-

ample, Genetic Algorithm (HOLLAND, 1992) was built to work with this type of codification,

while other algorithms, such as Particle Swarm Algorithm (PSO) (KENNEDY; EBERHART,

1995), were designed to work with continuous values. Although there are strategies to convert

a binary algorithm to a continuous algorithm and vice versa, this conversion is hard to tune and

it is believed that the search algorithm cannot be fully explored to find the optimal goal.

Different algorithms, such as Simulated Annealing (KIRKPATRICK et al., 1983), ac-

cept both cases. However, they do not have a defined search engine, becoming necessary to

create a function to create new solutions. This function adds another difficult step as it needs

to generate new configurations considering the diversification and intensification in the search

space.

The problem when using binary codification for sparse linear array design is the absence

of control in the number of selected elements. In this way, the sparse array might have a different

number of elements for each run of the algorithm, which depending on the application might

be undesirable. This can be overcome by using a penalization function, which punishes the

FF values of sparse array configurations that exceeded the number of desired elements. These

functions need to be tuned to work properly. If the penalization is sharp, the search mechanism

will not converge to a result with a sparse array with the desired number of elements. The same

behaviour occurs if the penalization is smooth. This creates a challenge to tune the penalisation

properly to select the number of elements in the sparse array.

As far as it could be seen in sparse linear array design, only binary codification has been

used. The closest to use continuous search algorithm was done by Zhang et al. (2020). The

authors used an S-Shape transfer function that converts continuous values into binary to adapt

the PSO algorithm and create a binary Particle Swarm Algorithm (bPSO). Even though the

authors claim that better configurations were found, the number of elements in the sparse array

is not limited without a penalization function. In such a manner, a codification for sparse linear

arrays can be created where it has control over the number of array elements without using any

penalization function and can be used in continuous optimization algorithms.

3.1.1 Countinous codification

The continuous codification developed in this work has in a vector (solution) the infor-

mation of the element’s position, instead of each element on the grid being on or off. Figure 25

illustrates half of an FPA and a sparse array. The array centred is at zero and, to form a complete

symmetric array, the results need to be mirrored. If the sparse array was encoded using binary

codification, the vector would have eight positions with the sequence [1, 1, 0, 1, 0, 0, 1, 0], where

the ones represent the four elements selected. In the proposed codification, the vector has only

four positions with the elements’ positions ([0.25, 0.75, 1.75, 3.25]).
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This new codification limits the number of elements in the sparse array. In the example

given, the binary representation has a size vector of eight, and the number of elements in the

array can vary from zero to eight. In the continuous codification, this size is four, and the sparse

array will always have this number of elements. This number is defined at the beginning of the

search and is immutable during the optimization process.

An aspect of the optimization defined in this work is that only half of the array will be

optimized, and the array will be symmetric, as illustrated Figure 25. In this way, it is possible

to assure that the energy coming from one part of the array will be equal to the energy coming

from the other part and it will avoid irregular shapes in the reflectors. Moreover, this strategy

reduces the number of possibilities of sparse arrays which enhances the convergence as it has

fewer possible arrays to be tested.

Figure 25 – Eight elements FPA (red dot), where four elements were selected (blue dot) to cre-
ate a sparse array.

Source: Author

One more parameter that needs to be defined at the beginning of each search is called

search space. The elements need a maximum and minimum distance where the elements will

be placed. For example, with a 96 FPA and 128 FPA, the size of the array is 47.5λ and 63.5

λ, respectively. Considering that only half of the array is optimized, the search space for these

two cases would be from 0.25λ to 23.75λ or 31.75λ. This means that the elements cannot be

placed outside this interval, and a solution outside this search distance is considered unfeasible.

At last, to match the elements’ position in a 0.5λ grid, the values on the solution are rounded to

the nearest grid point.

3.1.2 Comparing algorithms with radiation pattern fitness function

To test if this new codding strategy will help to find better sparse array configurations,

different algorithms using both binary and continuous codifications are used and the results are

compared. For the binary representation, the algorithms selected to find sparse arrays were Ge-

netic Algorithm (HOLLAND, 1992) and Simulated Annealing (KIRKPATRICK et al., 1983).

For the continuous representation, the algorithms selected were Harmony Search (ZONG et

al., 2001), Bat Optimization Algorithm (YANG, 2010), Whale Optimization Algorithm (MIR-
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JALILI; LEWIS, 2016), Arithmetic Optimization Algorithm (ABUALIGAH et al., 2021) and

Particle Swarm algorithm (KENNEDY; EBERHART, 1995). The fitness function used in this

problem is the RP FF given in (30).

Two search spaces were set for this problem to test the fitness functions in different

settings as they might happen to work in one configuration and fail in another. The first search

space corresponds to a 96 FPA, and the second is a 128 FPA search space. For the algorithms

where the binary configuration was used, the vector will have 48 and 64 positions with zeros

and ones, respectively. For the continuous codification, the array elements can be placed from

0.25λ to 23.75λ (96 FPA) or 31.75λ (128FPA), respectively. Then, the positions of the elements

are round to a 0.5λ grid that corresponds to the 96 or 128 FPA.

The genetic algorithm, which was initially designed to work with binary vectors, is one

of the algorithms that need a penalization function to control the number of elements in the

sparse array. As this is not the aim of this work, the algorithm was used to set the number

of elements in the sparse array by running it three times for each search space and taking the

number of elements in the sparse array as a parameter for the other algorithms.

For the 96 FPA search space, the first sparse array found using the genetic algorithm

had 66 elements with a FF of -15.75. The second result had 72 elements with a FF of -15.59,

and the third result the sparse array had 80 elements with a FF of -16.25. For the 128 FPA

search space, the first result found was a sparse array with 88 elements with a FF of -16.16. The

second result was a sparse array with 96 elements with a FF of -17.88 and, the last was a sparse

array with 102 elements with a FF of -17.52.

These number of elements of the sparse arrays found by the genetic algorithm were

used as a reference for the other algorithms as in the others it is possible to set the number of

elements desired for the sparse array. Moreover, two more numbers were arbitrarily selected

for the 96 FPA search space (48 and 88), and three for the 128 FPA search space (48, 64 and

110).

Tables 2 and 3 give the FF of the best sparse configurations found using the Arithmetic

Optimization Algorithm (AOA), Harmony Search (HS), Particle Swarm Optimization (PSO),

Simulated Annealing (SA) and Whale Optimization Algorithm (WOA) where each algorithm

ran three times finding three different sparse linear arrays. For each column, it is possible to

see the number of elements that the sparse arrays have and the results in bold indicate the best

result among them. The bat optimization algorithm was also tested, but it had a convergence

issue. This might happened because of the parameters used in the algorithm or its inefficient to

solve this problem. Either way, the results found using this algorithm were discarded.

The Simulated Annealing Algorithm differs from the others algorithm in the Tables as it

uses binary codification. The algorithm differs from the others as it requires that the user creates

a neighbourhood structure, which is a function that finds new solutions for the optimization
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problem. The strategy created randomly swaps an active element in the binary vector to an

inactive one. In this way, the number of elements in the sparse array keeps the same, and it is

possible to control the number of elements in the sparse array, which is not possible using the

genetic algorithm strategy.

Table 2 – Comparison between search algorithms using the radiation pattern based fitness fun-
ction given in (30). Search space corresponding to a 96 elements FPA

Elements 48 66 72 80 88
GA (binary) – -15.75 -15.59 -16.25 –
AOA Run 1 -12.09 -17.06 -16.56 -17.53 -15.09
AOA Run 2 -11.67 -16.41 -16.96 -17.55 -15.09
AOA Run 3 -13.16 -16.48 -18.21 -18.07 -15.10
HS Run 1 -14.34 -15.95 -15.95 -17.22 -15.11
HS Run 2 -13.62 -16.26 -16.26 -17.03 -14.96
HS Run 3 -12.96 -16.18 -16.18 -16.75 -15.11
PSO Run 1 -13.57 -16.00 -16.00 -18.29 -15.11
PSO Run 2 -12.31 -15.12 -15.12 -17.80 -15.11
PSO Run 3 -11.62 -15.22 -15.22 -17.52 -15.11
SA Run 1 (binary) -12.11 -15.21 -15.21 -15.04 -17.98

SA Run 2 (binary) -12.39 -13.32 -13.32 -15.11 -16.10
SA Run 3 (binary) -11.30 -14.91 -14.91 -14.01 -14.94
WOA Run1 -14.76 -17.51 -17.51 -17.65 -15.11
WOA Run2 -14.08 -16.75 -16.75 -18.01 -15.11
WOA Run3 -16.58 -17.23 -17.23 -17.66 -15.11

As it is possible to see in Table 2, most of the best results were found by the algorithms

that work with the continuous domain, except the SA Run1, where -17.98 is the best result

and used the binary domain. The FF of the configurations found by these algorithms were also

better than the FF of the best sparse arrays found in the Genetic Algorithm.

From Table 3, it is possible to see that the WOA found the best results for all settings of

sparse arrays and also these results were better than the ones found by the Genetic Algorithm.

This leads to an indication that the continuous codification together with algorithms designed

for its use can find sparse configurations with better FF than using binary codification.

One motivation of this part of the study is that most of the works that use the RP FF do

not show the sparse configuration, only the RP FF of the array found. When the array confi-

guration is given, the settings defined by the authors consider an FPA smaller than the desired

in this work. This makes it hard the comparison of different sparse arrays as the configurations

are unknown. After implementing the continuous search, it was noted that the results found

had lower FF values than in the works that use discrete search (YANG et al., 2006; HU et al.,

2017; HU et al., 2018; ZHANG et al., 2020). For example, Zhang et al. (2020) find a 88/128

sparse array where configuration FF is -18.33. In this work, the best 88/128 has a FF of -18.71.

In the same work, the 71/96 configuration has a FF of -17.81 and, in this work, the best 72/96



62

Table 3 – Comparison between search algorithms using the radiation pattern based fitness fun-
ction given in (30). Search space corresponding to a 128 elements FPA

Elements 48 64 88 96 102 110
GA (binary) – – -16.16 -17.88 -17.52 –
AOA Run 1 -11.56 -14.53 -15.27 -18.42 -18.77 -17.61
AOA Run 2 -11.13 -13.44 -16.17 -18.64 -17.45 -17.79
AOA Run 3 -10.87 -14.29 -18.30 -17.48 -19.03 -17.51
HS Run 1 -12.30 -13.41 -17.21 -18.89 -18.53 -17.35
HS Run 2 -11.13 -13.02 -17.69 -17.84 -18.12 -17.26
HS Run 3 -11.04 -13.45 -18.47 -18.10 -18.17 -17.50
PSO Run 1 -11.52 -12.98 -16.09 -18.74 -19.18 -17.82
PSO Run 2 -10.69 -13.15 -16.57 -15.50 -17.95 -17.91
PSO Run 3 -11.08 -13.56 -17.88 -18.75 -19.14 -17.45
SA Run 1 (binary) -13.18 -12.83 -15.67 -15.20 -15.73 -16.49
SA Run 2 (binary) -12.15 -13.54 -13.53 -15.19 -15.30 -17.56
SA Run 3 (binary) -12.70 -13.90 -13.04 -16.02 -14.41 -15.95
WOA Run1 -14.82 -16.62 -18.02 -19.12 -19.50 -18.08

WOA Run2 -14.33 -15.99 -18.71 -19.37 -19.02 -18.01
WOA Run3 -14.99 -15.85 -18.53 -18.80 -19.20 -17.86

configuration has a -18.21 FF. This codification with the continuous optimization algorithms

was able to find configurations with better FF.

In Figure 26 (a) and (b) the PSFs of a FPA with 96 and 128 elements are illustrated.

For all PSFs created in this chapter, the fc = 3.5 MHz, BW = 0.6 and fs = 35 MHz. The

images were created from −60◦ to 60◦ where the important information about the lateral and

grating lobes is concentrated in this area. For real applications, each element of the array has its

own radiation pattern that attenuates the energy outside |60◦|. Moreover, the point reflector was

positioned at 0 on the x-axis and a distance of z corresponding to the array size. For 96 FPA, it

is 47.5λ and, for 128 FPA, it is 63.5λ. The PSF, in axial size, needs to be wide enough to assure

that the lateral and grating lobes will be imaged.

As it can be seen in these PSFs, if the number of elements in the array increases, the

lateral resolution improves. Furthermore, if the array is symmetric, the PSF is symmetric and it

is only necessary to create half of the image. A difficult task when analysing ultrasonic images

is to quantify the images to decide which one is better. One strategy is to plot lines of the PSF

so it’s possible to see the lateral resolution and sidelobes levels improvement.

In this way, Figure 26 (c) illustrates the amplitudes created by calculating the mean of

the PSFs at each angle and then normalizing it, which will be referred to as normalized means.

These lines illustrate only half of the PSF, as the other half is the same. The blue continuous line

corresponds to the 96 elements of FPA, and the red dashed line corresponds to the 128 elements

of FPA. As can be seen in the zoomed part of the image, the lateral resolution is better for the

128 elements FPA, which is expected. One interesting feature of these signals is seen in 1.4◦
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and 1.5◦, where a valley is seen. This valley becomes closer to 0◦ as the array size increase.

Further, it will be used to define the new fitness function created in this work.

Figure 26 – PSF of (a) 96 elements FPA, (b) 128 elements FPA and (c) amplitude are summed
and then normalized at each angle of the PSF, where the blue continuous line corres-
ponds to the 96 elements FPA and the red dashed line corresponds to 128 elements
FPA.

(a) 96 Elements FPA (b) 128 Elements FPA

(c) Amplitudes’s Normalized Means

Source: Author

During the study of the optimization algorithms and the codification problem, different

sparse array configurations were found. It is expected that the lower the FF value of a sparse

array, the better this array is in imaging. To check if this trend happens, the PSFs of different

sparse configurations corresponding to the results in Table 2 and 3 were analysed.

Figure 27 illustrates two PSFs created using 66 elements in a search space correspond-
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ing to a 96-element FPA. In (a), the PSF created corresponds to the sparse array related to the

best 66 results presented in Table 2 as WOA Run1. In (b), the PSF was created using the sparse

configuration referred to AOA Run1.

Comparing the two PSFs, it is possible to see that Figure 27(a) has higher amplitudes

close to the point reflector and higher energy in different areas of the image compared to (b).

This is clear when the normalized mean of the PSFs are plotted together in Figure 27(c), where

the continuous blue line corresponds to the first PSF (WOA Run1 66/96) and the red dashed

line corresponds to the second PSF(AOA Run1 66/96). The amplitudes are lower at most of the

points in the PSF illustrated in (b). Although there is a slightly better lateral resolution in the

PSF illustrated in (a), it does not compensate for the high side lobes energy.

The FFs of these configurations are close to each other. The best configuration (WOA

Run1) has a FF of -17.51 and the second configuration (AOA Run1) has a FF of -17.06. How-

ever, by comparing the PSFs, the second configuration shows a PSF with a better balance be-

tween lateral resolution and artefact intensities, which is desirable for sparse arrays. The FF is

failing in distinguish sparse arrays as the ones with higher values have better characteristics.

Figure 27 – PSFs created using the 66 elements sparse array configurations related to Table 2,
where (a) is the WOA Run 1 configuration and (b) the AOA Run 1 configuration.
In (c), the normalized means of the two PSF are illustrated where the PSF in (a) is
illustrated in a blue continuous line and (b) is illustrated in a red dashed line.

(a) FF -17.51 (b) FF -17.06 (c) Normalized Means

Source: Author

Figure 28 illustrates two PSF of sparse arrays with 88 elements in a search space of a

96 FPA. The first PSF (a) is generated using the best configuration according to Table 2, which

is the WOA Run2 configuration with an FF of -17.98. The second PSF (b) is generated using

the worst configuration according to Table 2, that is SA Run 3 with a FF of -14.94.

By looking at the PSFs, they almost can be considered the same as the only difference

between them is the amplitudes highlighted in the squares in Figure 28 (a). The similarities are

clear when the mean normalized is analysed (Figure 28 (c)), where it is possible to see that the
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signals are similar to each other.

An interesting point of this comparison is when the FF of these two configurations are

analysed. The best configuration has a FF of -17.98 and the worst has a FF of -14.94. However,

they produce almost the same PSF, indicating that the sparse configurations have the same

potential for imaging. This shows that the FF used in several works (YANG et al., 2006; HU

et al., 2017; HU et al., 2018; ZHANG et al., 2020) is inefficient to evaluate the sparse linear

array configurations as the configuration with the best FF value does not correspond to the best

configuration to image.

Figure 28 – PSFs created using the 88 elements sparse array configurations related to Table 2,
where (a) is the SA Run 1 configuration and (b) the SA Run 3 configuration. In
(c), the normalized means of the two PSF are illustrated where the PSF in (a) is
illustrated in a blue continuous line and in (b) is illustrated in a red dashed line.

(a) FF -17.98 (b) FF -14.94 (c) Normalized Means

Source: Author

This same trend can be identified in the sparse array configurations found in the search

space of 128 elements FPA given in Table 3. Figure 29 illustrates two PSFs where the sparse

arrays have 102 elements. The PSF illustrated in (a) is generated with the sparse configuration

with the best FF value in Table 3 under 102 elements with a -19.50 value. The second PSF,

illustrated in (b), is generated with the sparse array with the worst FF among the 102 elements

with -14.41. Analysing the two PSFs it is possible to see that in (a) the PSF has higher energy

aside the point reflector than the PSF in (b).

The normalized mean of the PSF is illustrated in (c), where the blue continuous line

corresponds to the PSF in (a) and the red dashed line the PSF in (b). It is possible to verify

that the red dashed signal has a lower amplitude close to zero degrees, which translates to lower

energy close to reflectors during the imaging process giving better resolution and contrast.

The PSF’s analysis of the sparse arrays found indicates that this RP FF gave in (30)

is an unsatisfactory fitness function to evaluate sparse arrays configurations. The two features

extracted from the radiation pattern narrowband response are insufficient to summarize all the
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Figure 29 – PSFs created using the 102 elements sparse array configurations related to Table
3, where (a) is the WOA Run 1 configuration and (b) the SA Run 3 configuration.
In (c), the normalized mean of the two PSF are illustrated where the PSF in (a) is
illustrated in a blue continuous line and (b) is illustrated in a red dashed line.

(a) FF -19.50 (b) FF -14.41 (c) Normalized Means

Source: Author

information about it.

Different features of the radiation pattern can be extracted to create a new FF that can

evaluate the sparse array configuration and distinguish better the sparse configurations that can

generate images with good lateral resolution and contrast. However, it could be interesting to

use as a modelling tool a method close to how the ultrasonic images are generated. In this way,

the PSF has this ability and the challenge is to extract features of the PSF that will quantify all

the information about it to distinguish the configurations.

3.2 NEW FITNESS FUNCTION

The PSF simulates how a point reflector is imaged using an array. It is a better appro-

ximation to real applications than the radiation pattern narrowband response. Therefore, it is

going to be used to create a FF that will quantify the sparse array ability in imaging. The aim of

this chapter is to create a FF that is able to distinguish the sparse configurations in a way that a

low value represents a good array and a high value a bad array. As it could be seen, the previous

FF based on the radiation pattern fails in this distinction.

The PSF, as far as it could be seen in the literature, has not been used yet for this purpose

because it is considered time-consuming compared to the time to generate the radiation pattern.

However, as the processing power has increased over time, the PSF is now available for this

task.

During the analysis of the sparse arrays found using the RP FF, different PSFs were

analysed. Two characteristics were evaluated: The size of the point reflector and the amplitudes
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around it. The point reflector needs to be the smaller possible as it translates to better lateral

resolution in the images. On the other hand, the amplitudes outside the point need to be the

smaller possible so the images generated by this array would have good contrast. In this way, it

would be a reasonable strategy to create a FF that evaluates these two parameters.

The FF is created by extracting two features from the PSF, the energy (E) of part of the

PSF, which corresponds to the amplitudes outside the point reflector, and the Shannon entropy

(H) (SHANNON, 1948). Although the entropy is used in information theory as message un-

certainty during transmission, in this work, the entropy is used in machine learning background

(GERON, 2019) where it will evaluate the similarity between PSFs. Therefore, the PSF of a

sparse array will be compared to the PSF of an FPA considered as a PSF reference. Thus, both

the amplitudes and the point reflector size will be evaluated. The new FF will be created by

combining these two features. The logic of creating this FF is that it will be able to evaluate

both the point reflector size and the amplitudes around it.

Figure 30 (a) illustrates where the point reflector in the PSF will be positioned, which

is in x = 0 and z = D. D is the maximum size that the sparse array will have, which is defined

at the beginning of the search. For example, with 48 elements it is possible to create a sparse

array with an equivalent size of 64, 96 or 128 FPA. For this reason, it is necessary to define this

maximum size before starting the optimization process. The PSF size created needs to have an

axial size wider enough to contain all the side and grating lobes interferences. To compensate

for the time cost caused by the axial size, the PSF will be created from 0 to 60◦ and, as the

sparse array will be symmetric in its centre, only half of the PSF is required.

The energy is the sum of the amplitudes squared. However, the energy is not calculated

for all PSF as the focus is the energy around the point reflector. Figure 30 (b) illustrates a PSF

calculated using a 64 element FPA. To determine which amplitudes will be used to calculate the

energy, the normalized mean of the PSF is calculated and presented in Figure 30 (c). As it can

be seen, a recurrent valley appears and changes its position as the array size changes. This valley

was mentioned when the PSFs of 96 and 128 FPA were presented. Using this information, the

energy will be calculated using all amplitudes after this valley.

Figure 30 (d) illustrates the amplitudes used to calculate the energy, which is the ampli-

tudes after the first valley in the PSF reference (c). It is possible to see that the point reflector is

removed, remaining only the undesired amplitudes. The logic in this feature is that the optimiza-

tion algorithm will find sparse array configurations with lower energy that will, in consequence,

reduce the contrast loss when sparse arrays are used.

The second feature uses the Shannon entropy equation defined as:

H = −
Npix
∑

i=1

ρi logNpix
(ρi), (31)
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Figure 30 – (a) Distance where the defect is placed based on the array size (D). (b) PSF of a
FPA with 64 elements is used as an example. (c) normalized mean extracted from
the PSF showing the first valley and (d), the segmented PSF used to calculate the
Energy.

(a) (b)

(c) (d)

Source: Author

where ρi is a value of the distribution ρ calculated as:

ρ = PS F − PS Fre f +
1

Npix

, (32)

which is the PSF generated by the sparse array currently analysed minus a PSF reference, that

is a PSF of an FPA with the dimension D set at the beginning of the search (Figure 30 (b) for

example), and added to an amplitude 1/Npix, where Npix is the number of pixels in the PSF

image.

This equation works as a similarity evaluator between two PSFs, where one is generated

by the sparse array and the other by a PSF considered the best, which is based on an FPA with

size D defined at the beginning of each search. If in a perfect case where the two PSFs are the

same, the difference in amplitudes is equal to zero. However, the constant 1/Npix is summed

resulting in a uniform distribution and a max entropy of 1.
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The new fitness function proposed in this work combines these two features. As the

optimization algorithms work to find new arrays that minimize the FF value, the new FF is

created by taking the energy of the segmented PSF and dividing it by the entropy (Equation

(33)). In this way, the optimization algorithm will try to find a sparse array configuration that

produces low energy in the undesired area and has high entropy, which corresponds to a more

similar PSF compared to the PSF reference.

FF = E/H, (33)

Table 4 – Comparison between search algorithms using the radiation pattern based fitness fun-
ction given in (33). Search space corresponding to a 96 and 128 elements FPA

Setting 96 128
Elements 48 66 72 80 88 48 64 88 96 102 110

AOA Run 1 1.98 1.34 1.18 1.03 0.93 12.75 6.12 1.70 1.34 1.54 1.01
AOA Run 2 2.05 1.30 1.19 1.02 0.92 12.17 4.02 1.92 1.22 1.54 0.90
AOA Run 3 1.98 1.28 1.21 1.02 0.91 12.61 6.30 1.72 1.57 1.24 1.11
HS Run 1 2.95 1.54 1.17 1.04 0.93 13.28 4.77 1.68 1.15 1.00 0.85
HS Run 2 2.76 1.52 1.26 1.02 1.01 12.58 5.09 1.75 1.18 1.02 0.86
HS Run 3 3.23 1.41 1.19 1.09 0.98 12.07 5.73 1.55 1.21 1.00 0.84

PSO Run 1 1.97 1.36 1.15 1.00 0.90 11.12 4.48 1.51 1.13 0.98 0.83
PSO Run 2 7.81 1.28 1.17 1.01 0.91 15.37 4.09 1.74 1.17 0.97 0.84
PSO Run 3 2.05 1.31 1.17 1.08 0.92 10.61 4.22 1.57 1.17 0.97 0.83

SA Run 1 (binary) 2.81 1.32 1.19 1.07 0.93 14.27 4.91 1.56 1.18 1.03 0.86
SA Run 2 (binary) 2.14 1.32 1.33 1.05 0.92 20.42 4.00 1.46 1.13 1.04 0.90
SA Run 3 (binary) 1.99 1.31 1.13 1.05 0.93 20.91 4.98 1.48 1.17 0.95 0.84

WOA Run 1 1.37 1.49 0.96 0.90 0.84 9.72 3.37 1.27 0.96 0.81 0.72
WOA Run 2 2.11 1.00 0.94 0.87 0.83 7.84 3.31 1.29 0.96 0.82 0.71
WOA Run 3 7.32 1.07 1.00 0.89 0.85 7.96 3.62 1.28 0.95 0.84 0.70

The search algorithms used with the fitness function based on the radiation pattern were

also used with this new fitness function to evaluate how the algorithm behaves. Only the sim-

ulated annealing has the binary codification and the genetic algorithm was not used as it is

necessary to have a penalty function to control the number of elements. The settings with

search space and the number of array elements remained the same and the FF values os of the

sparse arrays found were illustrated in Table 4.

One interesting point about the results is that the WOA algorithm was able to find the

configurations with the lowest FF value as highlighted in bold. This concentration of best results

indicates that the WOA is the best search algorithm among the tested algorithms.

Different sparse arrays with their respective FF given in Table 4 were used to generate

their respective PSF to analyse how well the FF was able to distinguish the sparse arrays confi-

gurations in imaging. In the first case, the best array configuration with 48 elements in a search
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space of 96 elements (WOA Run 1) was used to create the PSF illustrated in Figure 31 (a). To

compare with this PSF, the sparse array found using the WOA in run 3 with FF of 7.32 was

illustrated in Figure 31 (b). As it is possible to see in the PSFs, the energy outside the point

reflector is much higher in (b) and this configuration would probably generate worse images.

This difference is clear when the normalized means, illustrated in Figure 31 (c), are

analysed. In the blue continuous line, the PSF of the WOA Run 1 (the best) has a worse lateral

resolution, but an energy 15 dB lower compared with the PSF of the WOA Run 3, illustrated

in the red dashed line. There is a substantial difference between the FFs as the WOA Run 1

configuration has a 1.37 value and the WOA Run3 configuration has a 7.32 value.

Figure 31 – PSFs created using the 48 elements sparse arrays in a search space of 96 FPA,
where the FF of each configuration is illustrated in Table 4. (a) is the WOA Run 1
configuration and (b) the WOA Run 3 configuration. In (c), the normalized means
of the two PSF are illustrated where the PSF in (a) is illustrated in a blue continuous
line and (b) is illustrated in a red dashed line.

(a) FF 1.37 (b) FF 7.32 (c) Normalized Means

Source: Author

This example was used to illustrate that the configurations with higher FF generate PSF

with undesired features, like wider lateral resolution and higher side lobes. The configuration

related to the PSO Run 2 with a 7.81 FF value also has a PSF with high energy outside the point

reflector. These results are outliers as they are much higher than the other FF. Sometimes these

outliers can occur in optimization problems as the algorithm is not able to converge to a good

result. In this way, one strategy is to run the algorithm a number of time and considerer the

configuration with the lowest FF.

In this second example, the configurations selected have a small FF difference. Both

configurations are a sparse array with 88 elements in a search space of 128 elements where

the first is the WOA Run 1 with a FF of 1.27, which is the smallest value found among the

other results, and the second is the AOA Run 2 with a FF of 1.92. Their PSF are illustrated in

Figure 32 (a) and (b), respectively. The differences between the PSFs are visually smaller in

this case. However, it is possible to see a higher amplitude in (b) highlighted in the image.
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The normalized mean is illustrated in Figure 32 (c) where the PSF of WOA Run 1

configuration is illustrated in a blue continuous line, the PSF of AOA Run 2 is illustrated in a

red dashed line and the PSF of a 128 FPA is illustrated in black dotted line. Close to the point

reflector, the amplitudes are similar to each other with a small difference in 2◦ where the red

dashed is 3 dB higher. For most of the larger angles, the PSF of AOA Run 2 configuration has

higher values, corroborating the higher FF value.

Although the PSF are alike, the PSF in (b) has higher amplitudes outside the point

reflector which might translate to a worse contrast in ultrasonic images compared to the PSF in

(a). In this way, the proposed FF was able to quantify this visual difference and indicate which

is a better sparse linear array configuration.

Figure 32 – PSFs created using the 88 elements sparse arrays in a search space of 128 FPA,
where the FF of each configuration is illustrated in Table 4. (a) is the WOA Run 1
configuration and (b) the AOA Run 2 configuration. In (c), the normalized means
of the two PSF are illustrated where the PSF in (a) is illustrated in a blue continuous
line and (b) is illustrated in a red dashed line.

(a) FF 1.27 (b) FF 1.92 (c) Normalized Means

Source: Author

This ability for this fitness function to distinguish the sparse configurations is even better

highlighted when the PSFs of two sparse array configurations with 110 elements are compared.

The first configuration is the best one found WOA Run 3 with a FF value of 0.70 and the second

configuration is the WOA Run 1, which has a slightly higher FF value of 0.72. The PSF os

these configurations are illustrated in Figure 33 (a) and (b), respectively. As it can be seen, their

PSFs are almost identical with a minor intensity increase highlighted with the white rectangles

in (b).

The normalized means amplitude are given in Figure 33 (c). It is possible to see where

these higher amplitudes summed as the PSF generated with the WOA Run 1 configuration,

illustrated with a dashed red line, have higher intensity between 15 to 38◦.

In this last example, two results with almost identical FF values were compared to check

if this small value difference would be able to distinguish the sparse array configurations. The
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Figure 33 – PSFs created using the 110 elements sparse arrays in a search space of 128 FPA,
where the FF of each configuration is illustrated in Table 4. (a) is the WOA Run 3
configuration and (b) the WOA Run 3 configuration. In (c), the normalized means
of the two PSF are illustrated where the PSF in (a) is illustrated in a blue continuous
line, in (b) is illustrated in a red dashed line and the.

(a) FF 0.70 (b) FF 0.72 (c) Normalized Means

Source: Author

configuration with higher FF also had higher PSF amplitudes meaning that this configuration

would generate a slightly worse ultrasonic image compared to the other sparse array configura-

tion with lower FF.

In the state of art FF based on the radiation pattern (30), there were cases where con-

figurations that generated PSF with low artefact intensity and high resolution were considered

a worse configuration compared to sparse arrays that generate worse PSF but have a lower FF.

This means that the RP FF misses apertures that generate images with good qualities and cannot

distinguish between good and bad sparse array configurations.

In this new FF, when the difference in the FF between two configurations is high, it is

evident that the PSF generated with the configuration with lower FF will be better with lower

energy outside the point reflector. If this difference is reduced, the distinctions start to be hard to

see, as illustrated in example 2. However, the FF can distinguish which configuration generates

better PSF. At last, two configurations with almost the same FF were analysed. The PSFs were

very similar, but the one generated by the configuration with lower FF has better features, as

highlighted.

The new FF follows the logic, as the lower its value in a configuration, the better this

sparse array is to image, which is a behaviour not seen in the RP FF. To validate this new FF and

compare the configurations found using it with configurations found using the RP FF, phantom

images were generated and analysed.
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3.3 RESULTS AND DISCUSSION

The best sparse array configurations found using either the FF based on the radiation

pattern and the proposed FF given in Table (2), (3) and (4) are used to generate ultrasonic images

of a Phantom (Dansk Fantom Service, model 525). The ultrasonic echoes of the Phantom

were acquired using the Synthetic Aperture technique, where a commercial 128-channel array

system (SITAU-LF 32:128, Dasel SL, Madrid, Spain) was used to operate an FPA with 128

elements, central frequency ( fc) of 3.5 Mhz, excited using 4 cycles sinusoidal burst with a

Gaussian envelope, and a sampling frequency ( fs) of 35 MHz.

As the Synthetic Aperture Technique needs a post-processing stage where a beamfor-

ming algorithm is used to generate an image, all the echos are stored in a matrix of emitters,

receivers and samples, creating a FMC shaped as (128, 128, 7200). In this way, it is possi-

ble to select only the echoes corresponding to a sparse array configuration to artificially create

experimental data and an ultrasonic image of this sparse array.

The phantom is illustrated in Figure 34. In sections 1, 4 and 5 there are groups of low

contrast cylinders that are not detectable because of the low SNR of the Synthetic Aperture

technique. In sections 2, 3 and 6, there are 11 twisted threads of nylon, and sections 3 and 6

are better imaged. The sections are separated by the twisted threads, where three in front of the

array were selected to be imaged, creating a section F.

Figure 34 – Dansk Phantom Model 525.

(a)

Source: Author

The ultrasonic images of the phantom are illustrated in Figure 35, where all 128 avail-

able array elements are used to image. Section 3 of the phantom is illustrated in (a), section 6 is

illustrated in (b) and section F is illustrated in (c). Moreover, the location of the twisted wires

is indicated in the image using the red circles. The circles shows only where the twisted wires

are and do not indicate the size of the wires in the image.
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Figure 35 – Ultrasonic images of (a) Section 3, (b) Section 6 and (c) Section F of the Dansk
Phantom Model 525.

(a) (b) (c)

Source: Author

One laborious task is to evaluate the ultrasonic images, as it is a subjective task. It

is hard to quantify information about lateral resolution and artefact intensity in the way that

all aspects of the image are considered. For example, the mean squared error between one

ultrasonic image generated using a sparse array and the image generated using an FPA can have

a high error, but it does not mean that the image is bad.

The problem of using the Mean Squared Error can be illustrated in Figure 36, where

section 3 of the phantom is generated using 3 configurations: (a) the 128 FPA, (b) a 96 Sparse

Array found using the RP FF and (c) a 96 sparse array found using the proposed fitness function.

These two sparse configurations are the best found in Table 3 and Table 4, respectively. The

dynamic range was purposely set to -25 dB to highlight the wires and the energy aside them. In

(a), there is high energy aside the wires related to the side lobes of the FPA. This is more evident

in (b), where there is an improvement in the lateral solution, but the high side lobes create an

artefact with high intensity aside the reflectors, as highlighted in the image. In (c), there is a

loss in lateral resolution compared with (a) and (b), but this energy asides the reflector does not

appear.

As it can be seen, there are different aspects of the image that need to be analysed to

determine the image quality. If only the error between the image generated by the FPA and the

sparse array would be used to characterize the images, the image in (b) that has a lower error,

would be considered better than the image in (c).

Wang et al. (2004) presented one figure of merit called Mean Structural Similarity Image

Measurement (MS S IM), which evaluates one image with a reference based on three compo-

nents: luminance, contrast and structure. Rangaraju et al. (2012) used this figure of merit in

ultrasonic images to conclude that this measurement is more consistent than the mean squared

error.
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Figure 36 – Phantom Section 3 Image using: (a) 128 Elements FPA, (b) best 96-configuration
found using the Radiation Pattern FF and (c) best 96-configuration found using the
FF proposed in this work.

(a) (b) (c)

Source: Author

The MSSIM of two images, I1 and I2, is calculated as:

MSSIM(I1, I2) =
1
M

M
∑

i=1

S S MI(I1i
, I2i

), (34)

where the images are segmented into squared blocks of 25 pixels, which corresponds to the

wire size. Then, the SSMI for each block is calculated as:

SSMI(x, y) =
(2µxµy)(2σxy)

(µ2
x + µ

2
y)(σ2

x + σ
2
y)
, (35)

which x and y correspond to the amplitudes of the segmented image I1 and I2, respectively. µ

the mean and σ the standard deviation.

σxy is a value calculated as:

σxy =
1

M − 1

M
∑

i=1

(xi − µx)(yi − µy). (36)

MS S IM has a range of 0 to 1, where the higher the value, the greater the similarity.

This figure of merit will be used to compare and measure the similarity between the

ultrasonic image generated by a sparse array and an ultrasonic image generated by an FPA,

which is considered the best array. In this way, it is possible to check which sparse array

configuration will generate images more similar to a reference.

In addition, the contrast to noise ratio (CNR) is also used as a figure of merit, which is

defined as (PATTERSON; FOSTER, 1983):

CNR(Iin, Iout) =

∣

∣

∣µIin
− µIout

∣

∣

∣

(σIin
+ σIout

)1/2
, (37)
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in this way, the best sparse array configuration indicated in Tables 2, 3 and 4 found using the

FF based on radiation pattern and the proposed FF based on the PSF’s analysis was used to

generate the phantom image of section 3, 6 and F. Then, the CNR and the MSSIM, defined in

(36), were used to evaluate the generated phantom images.

The MSSIM needs a reference image and two strategies were adopted to define this

reference image. First, the reference image is generated based on the search space defined at

the beginning of each search. For example, the first five array configurations correspond to a

search space of 96 FPA. Therefore, the reference image for these configurations is a phantom

image of sections 3,6, and F that was created using a 96 FPA. For the last six configurations, the

search space corresponds to a 128 FPA, so the reference image is generated using a 128 FPA.

The second strategy considers the actual size of the sparse array to create an ultrasonic

image with an equivalent FPA. For example, the first setting considers positioning 48 elements

in a space where 96 elements fit. Although it is possible to use all the space, the best result

found using the proposed FF places the furthest element at an equivalent FPA with 54 elements.

In this way, the FPA used to create a reference image is the 54 FPA. Table 5 summarizes all the

results where the top half of the table the 96 and 128 FPA are considered as a reference (Strategy

1) and the bottom half of the table considered the size of the sparse array to create the reference

image (Strategy 2), where higher values that have more than 0.5 difference are highlighted.

The reason to choose these two strategies is to focus on different aspects of the images

generated by the sparse arrays. Strategy 1 focuses on images’ lateral resolution, as the reference

is the 96 and 128 FPA. The focus of strategy 2 is on the artefacts’ intensities and how similar

they are to the variable reference image. It is desired that the sparse array generates images

with a higher lateral resolution, but the artefact intensities need to remain low. Therefore, the

FF needs to consider a satisfactory sparse array that generates images that has the balance of

these two characteristics.

In Strategy 1, under the 96 FPA reference section, the values are low for the 48 and 66

elements sparse array for both arrays found using different FF. The arrays found using the RP

FF have higher lengths than the lengths of the arrays found using the proposed FF. In the case

of a low number of elements in a wide search space, the images generated by the arrays found

using the RP FF have high artefact intensities that collaborate with this reduction in the MSSIM

result. In contrast, the arrays found using the proposed FF are less sparse, which means that the

lateral resolution is decreased and collaborates with the lower MSSIM. However, the images

generated by these arrays have a better balance between lateral resolution and contrast, as will

be seen when the results in strategy 2 are analysed. As the number of elements increases in the

sparse array, the MSSIM also increases, and similar MSSIM results are obtained for both sparse

arrays.

In 128 FPA reference, the same trend happens in the 48 and 64 elements sparse arrays,

which are considered a reduced number of elements in the sparse array considering the search
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space. However, it is possible to see that the MSSIM of the images generated with the sparse

arrays found using an RP FF has more than 0.5 difference in the 44, 64 and 88 elements sparse

array. This happens because the sparse arrays have higher lengths and, consequently, better

lateral resolution. In Strategy 1, the lateral resolution has a higher contribution to a higher

MSSIM, as it is compared with the 128 FPA. In the 96/128FPA result, the sparse array found

using the proposed FF has a considerable higher MSSIM. The 96/128 FPA found using the

RP FF is one of the cases where the array has a low RP FF value but generates images with

undesired qualities, such as high artefact intensities and low lateral resolution. In the last two

settings (102 and 110).

Under Strategy 2 in Table 5, the Ref PSF and Ref RR show the size of the FPA used as

a reference to compare with the sparse arrays found. For example, the 66 elements sparse array

found using the proposed FF has a respective size of 76 FPA, and the one found using the RP

FF has a size of 84 FPA. In the 48 and 66 elements sparse array of the 96 FPA search space, the

MSSIM values are considerably higher for the images generated using the sparse array found

with the proposed FF. This same happens in the 48, 64 and 88 sparse array elements of the

128 FPA search space. As this strategy focuses more on the artefact intensities, it is possible

to see that the images generated using the sparse arrays found with the proposed FF values

sparse arrays configurations that generate images with a balance between lateral resolution and

contrast. In the other results, the MSSIM values are higher in most cases.

Table 5 – MSSIM calculated between an image generated with a sparse array and a reference
image

Strategy 1
Reference 96 128
Elements 48 66 72 80 88 48 64 88 96 102 110

Sec3 - PSF 0.69 0.79 0.84 0.92 0.97 0.64 0.70 0.81 0.81 0.84 0.89
Sec3 - RP 0.68 0.82 0.84 0.92 0.97 0.89 0.78 0.86 0.58 0.88 0.90
Sec6 - PSF 0.65 0.75 0.82 0.87 0.95 0.57 0.65 0.78 0.77 0.82 0.88
Sec6 - RP 0.61 0.77 0.81 0.89 0.96 0.63 0.77 0.83 0.54 0.86 0.89
Sec6 - PSF 0.67 0.81 0.85 0.92 0.98 0.65 0.75 0.85 0.84 0.88 0.93
Sec6 - RP 0.69 0.82 0.86 0.93 0.98 0.70 0.84 0.90 0.55 0.92 0.92

Strategy 2
Ref PSF 60 76 94 94 94 76 98 102 102 112 126
Ref RR 78 84 94 94 94 118 126 126 126 126 126

Elements 48 66 72 80 88 48 64 88 96 102 110
Sec3 - PSF 0.94 0.93 0.84 0.91 0.97 0.85 0.93 0.96 0.93 0.97 0.91
Sec3 - RP 0.67 0.81 0.85 0.91 0.97 0.69 0.78 0.85 0.58 0.87 0.89
Sec6 - PSF 0.92 0.90 0.81 0.88 0.96 0.81 0.89 0.94 0.91 0.95 0.89
Sec6 - RP 0.60 0.77 0.82 0.90 0.95 0.64 0.77 0.82 0.53 0.85 0.87

SecF - PSF 0.97 0.95 0.86 0.93 0.98 0.90 0.96 0.98 0.95 0.98 0.94
SecF - RP 0.65 0.81 0.87 0.94 0.98 0.71 0.85 0.91 0.55 0.91 0.91

The contrast to ration (CNR) of the phantom images can be analysed to elucidate this

better relationship between lateral resolution and contrast for the sparse array found using the

proposed fitness function. Table 6 illustrates the CNR calculated using (37) for Sections 3, 6
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and F of the phantom using all the best sparse arrays and the respective 96 and 128 FPA, where

the best results between the sparse arrays are highlighted.

Table 6 – CNR of section 3, 6 and F of the phantom image generated by the sparse arrays and
the 96 and 128 FPA

Setting 96 128
Elements 48 66 72 80 88 48 64 88 96 102 110
Sec3 FPA 11.64 11.64 11.64 11.64 11.64 11.62 11.62 11.62 11.62 11.62 11.62

Sec3 (PSF) 11.08 11.64 11.69 11.94 11.78 11.37 11.55 11.62 11.64 11.54 11.20

Sec3 (RP) 9.62 10.36 11.84 11.90 11.77 10.39 10.36 10.98 10.46 11.04 10.94
Sec6 FPA 10.96 10.96 10.96 10.96 10.96 10.92 10.92 10.92 10.92 10.92 10.92

Sec6 (PSF) 10.59 10.74 10.82 10.89 10.94 10.53 10.65 10.84 10.94 10.88 10.78

Sec6 (RP) 9.09 9.90 10.75 10.95 10.98 9.46 9.00 9.81 9.43 10.24 10.18
SecF FPA 11.54 11.54 11.54 11.54 11.54 11.55 11.55 11.55 11.55 11.55 11.55

SecF (PSF) 10.74 11.53 11.62 11.66 11.60 11.31 11.35 11.52 11.68 11.60 11.39

SecF (RP) 9.57 10.52 11.58 11.63 11.58 10.90 11.13 11.15 10.65 11.08 11.08

The sparse arrays found using the proposed fitness function have higher CNR compared

to the arrays found using the RP FF, with exception of 3 cases. Although these sparse arrays

have a better lateral resolution, the artefact intensity has a higher level, showing that the RP FF

has a poor ability to evaluate sparse arrays that generate an image with a good balance between

lateral resolution and contrast. The proposed FF considers good arrays the ones that have a

better balance between lateral resolution and side lobes’ intensity. Furthermore, the RP FF has

the problem of miss judge arrays where one with high FF generates better images than one with

lower FF, which does not happen with the proposed FF.

Figure 37 illustrates the phantom images generated in sections F and 6 for the 48 ele-

ments sparse array under the 96 setting. The 96 FPA images are given in (a) for section F and

(d) for section 6. In (b), section F of the phantom is generated using the sparse array found using

the FF based on the radiation pattern. As it can be seen, the lateral resolution looks similar to

the 96 FPA image (a). However, due to high side lobes, there is a high artefact intensity aside

the twisted wire. In comparison, section F generated by the 48 sparse arrays found using the

proposed FF (c) does not have this high-intensity artefact but there is a loss in lateral resolution.

The interference caused by the high side lobes is more clear when Section 6 is analysed.

In (e), the image was generated using the sparse array found using the RP FF. It is possible to

see that the interference in the lower wires makes its identification difficult. On the other hand,

the image generated by the sparse array found using the proposed FF has a loss in the lateral

solution as the wires are wider in this image but it has better contrast.

As the number of elements in the sparse array increases in the setting 96, both sparse

configurations found using the two FF have the same dimension equivalent to a 94 FPA size.

The CNR and MSSIM are close to each other, as the phantom images (Figure 38).

For the sparse configurations under setting 128, the same trend happened. For the sparse

arrays with a lower number of elements (48,64 and 88), the arrays found using the RP FF had



79

Figure 37 – Section F of the phantom generated using the (a) 96 FPA, (b) the best 48 elements
sparse array found using the FF based on radiation pattern and (c) the best 48 ele-
ments sparse array found using the proposed FF. Section 6 of the phantom genera-
ted using the (d) 96 FPA, (e) the sparse array found using the FF based on radiation
pattern and (f) the 48 elements sparse array found using the proposed FF.

(a) (b) (c)

(d) (e) (f)

Source: Author

Figure 38 – Section 3 of the phantom generated using the (a) 96 FPA, (b) the 80 elements best
sparse array found using the FF based on radiation pattern and (c) the 80 elements
best sparse array found using the proposed FF.

(a) (b) (c)

Source: Author
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better lateral resolution but with worse contrast. As the number of elements in the sparse array

increases (102 and 110), the images are similar in contrast and lateral resolution.

The proposed FF considers good apertures that have an equilibrium of lateral resolution

and contrast compared to the RP FF. Moreover, sometimes the sparse array considered the best

with the lower values in the RP FF does not mean that the array will generate good images.

For example, the best 96 elements sparse array found using the RP FF generates a

phantom image with high artefacts’ intensity. Figure 39 illustrates phantom images of sections

F and 6 generated using different arrays configurations. In (a) and (d), the phantom image is

generated using the 128 FPA. In (b) the section F image is generated using the best 96 elements

sparse array found using the RP FF, it is possible to see a high artefact intensity aside the twisted

wires. In Figure 39 (e) the sum of intensities makes the interpretation of the image confusing

and hard to identify the wires.

Section F of the Phantom image generated by the best 96 sparse arrays found using the

proposed FF is illustrated in Figure 39 (c). As it can be seen, the lateral resolution is lower but

the artefacts asides the wires images do not appear with the high intensity as in Figure 39 (a)

and (b). This also makes the interpretation of section 6 (f) easier as it is more clear to see the

wires in the image, although it is not possible to identify the two twisted wires close to each

other, as highlighted in the image.

3.4 COMMENTS

This chapter collaborates on different aspects of the linear sparse array design and will

be submited in the future to a journal. The new codification with the continuous optimization

algorithms is able to control the number of elements in the sparse array without penalization

function and was able to find better sparse array configurations with better FF compared to

the presented in the literature. Moreover, it was noticed that the RP FF fails to distinguish

between good and bad apertures, as some sparse configurations generate PSFs with good lateral

resolution and low artefact intensity but has a high FF value. In this way, a new fitness function

was proposed that uses the energy and entropy extracted from a PSF. This new FF aims to

correctly evaluate sparse array configurations that consider maintaining a reasonable lateral

resolution and contrast.

The phantom results were able to experimentally show that this goal was achieved. For

configurations that have a low number of elements, the sparse arrays found using the proposed

FF maintain a good lateral resolution and contrast. As the number of elements increases, the

images generated by the sparse arrays found using the two FF were the same. However, as

the RP FF sometimes fails to distinguish good and bad apertures, the best sparse array with 96

elements has high artefact intensity that makes the image unrecognizable.

Although the linear arrays presented in this work are set to a 0.5 λ grid, it is possible to
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Figure 39 – (a) Section F and (d) Section 6 of the phantom generated using the 128 FPA, (b) and
(e) the phantom images generated by the 96 elements best sparse array found using
the FF based on radiation pattern and (c) and (f) the phantom images generated by
the 96 elements best sparse array found using the proposed FF.

(a) (b) (c)

(d) (e) (f)

Source: Author

remove this grid and give more freedom to the elements to be placed and better results found.

Moreover, the synthetic aperture technique can be used to create a low-cost system, which

increases access to medical care in poor and developing countries. The calculation of the PSF

is still computationlly costy to be used in 2D sparse array design and alternatives are necessary

to evaluate the configurations.

During the development of this work, the synthetic aperture technique was used, and

the phantom images were generated using the combinations of emitter and receivers signals

of the FMC. The acquisition time of the FMC was not considered in this study, as the signals

were already stored in memory. However, it is easy to see that the sparse configurations reduce

this time as fewer elements are used compared to an FPA. Another alternative to decrease the

acquisition time in the synthetic aperture technique is to create an acquisition strategy where

not all emitter and receivers combinations are sampled, which is attractive for 2D arrays, where

reducing the acquisition time enables to use of real-time ultrasonic applications for 2D arrays

using synthetic aperture.
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4 ACQUISITION STRATEGY FOR NON-GRID APERTURES

In this chapter, a guide to design ultrasonic synthetic aperture systems for non-grid two-

dimensional sparse arrays such as spirals or annular segmented arrays is presented. It presents

an algorithm that identifies which elements have more significant impact on the beampattern

characteristics and uses this information to reduce the number of signals, the number of emit-

ters and the number of parallel receiver channels involved in the beamforming process. Con-

sequently, we can optimise the 3D synthetic aperture ultrasonic imaging system for a specific

sparse array, reducing the computational cost, the hardware requirements and the system com-

plexity. Simulations using a Fermat spiral array and experimental data based on an annular

segmented array with 64 elements are used to assess this algorithm.

This chapter is part of the work published by DE SOUZA et al. (2021)

4.1 THE COARRAY ANALYSIS

The development of real-time ultrasonic imaging systems based on arrays is a complex

issue that encompasses different fields of study, such as material science (PARK et al., 2020),

manufacturing (SUN et al., 2015), physics (LI; CHI, 2018), and electronic integration (BIRK

et al., 2014). Signal processing also plays a considerable role in this challenge (KARAMAN et

al., 2009; HOCTOR; KASSAM, 1990), mainly to establish a good trade-off between hardware

complexity and image requirements.

Synthetic Aperture Focusing Techniques (SAFT) allow the system designer to reduce

hardware requirements at the expense of image frame rate (KARAMAN et al., 2009; HOCTOR;

KASSAM, 1990; LOCKWOOD et al., 1998; RASMUSSEN; JENSEN, 2014; HOLMES et al.,

2005). A synthetic aperture imaging system is based on a two-step process: data acquisition and

beamforming. The complexity and necessary resources associated with both processes are de-

termined by what we call here the acquisition strategy (ACQ). The data acquisition sub-process

follows this strategy, which is based on the independent capture of the signals that correspond

with each emission/reception pair (e-r pair) for the selected aperture. The most complete acqui-

sition strategy is the Full Matrix Capture (FMC), which, for an N-element aperture, captures

all the (N ×N) signals (one for each e-r pair). Then, the beamforming sub-process performs the

compensation of emission and reception delays at each point of the Region Of Interest (ROI)

using the T FM given in (28), where ser(t) is the signal received by the element r when e is the

emitter.

Although the T FM generates high-quality images, the FMC offers a poor trade-off be-

tween hardware parallelism and frame rate. The ratio between the number of signals (N × N)

and the number of parallel electronic reception channels determines the number of acquisition

operations. As a result, low parallelism in reception increases the acquisition time. Further-
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more, with this number of signals, the computational cost to generate the T FM image is high

(HOLMES et al., 2005; ROMERO-LAORDEN et al., 2016).

As explained in Chapter 2, the combination of emitters and receivers in an array can

be modelled as a sampling grid known as coarray (HOCTOR; KASSAM, 1990). The emi-

tter/receiver element combination corresponds to a spatial frequency (KARAMAN et al., 2009),

and signals that occupy the same spatial frequency in the coarray can be considered redundant

for the beamforming process. In this sense, in a matrix array, the FMC has a high degree of

redundancy and, if redundant information is eliminated, in exchange for a reduction in signal-

to-noise ratio, it is possible to reduce the computational cost and simplify the acquisition pro-

cess (BRUNKE; LOCKWOOD, 1997; HOCTOR; KASSAM, 1990; KARAMAN et al., 2009).

For matrix apertures, this analysis provides a straightforward way to simplify system ac-

quisition design (KARAMAN et al., 2009; HOCTOR; KASSAM, 1990; LOCKWOOD et al.,

1998; MARTÍN et al., 2012). The most efficient coarray is the Minimum Redundancy Coarray

(MRC), where just one element occupies each spatial frequency or coarray location (ISHI-

GURO, 1980). Such a solution, using the minimum number of signals, provides the maximum

degrees of freedom and lateral resolution and avoids grating lobes. Moreover, depending on the

available parallel resources, it can be achieved with different acquisition strategies (MARTÍN

et al., 2010).

When considering non-matrix arrays (e.g. spiral or circular distributions), the redun-

dancy identification becomes a complex issue (MARTÍNEZ-GRAULLERA et al., 2010; SCH-

WARTZ; STEINBERG, 1998; DIARRA et al., 2013). The differences between matrix and

non-matrix are presented in Figure 40(a) and (e), with their corresponding coarrays illustrated

in (b) and (f), respectively. Both apertures have the same number of elements (N = 64), and the

same dimensions (diameter, D = 16λ).

Figure 40(c) and (g) illustrate an equivalent linear array for the matrix and spiral array,

where the elements are projected in the x-axis (φ = 0◦). Two characteristics are highlighted

for the equivalent linear array. First, the matrix array has a high degree of coincidence in its

element location and concentrates them in very few locations. Second, the spiral array elements

are less coincident and produce a dense equivalent linear array. The matrix array generates a

regular coarray of λ spacing grid, while the spiral array generates a coarray with an irregular

pattern that has smaller and irregular spacing between elements. This element distribution has

consequences on the beampattern (wideband response, BW = 60%) because it reduces the

number of constructive interferences in the sidelobe region (Figure 40(d) and (h)).

Although sparse configurations based on non-matrix arrays allow better space distribu-

tion compared to sparse matrix arrays (MARTÍNEZ-GRAULLERA et al., 2010; SCHWARTZ;

STEINBERG, 1998), they also show significant levels of redundancy. The reciprocity principle

(ser(t) ≡ sre(t)) can be used to reduce some redundancy. Considering the coarray definition

given in (27), each emitter/receiver pair and its associated signals ser(t) corresponds to a unique
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Figure 40 – For matrix arrays: (a) array structure, (b) coarray footprint, (c) equivalente array
projection at φ = 0◦, and (d) radiation pattern at φ = 0◦ (wideband response,
BW=60%). For spiral array aparture: (e) array structure,(f) coarray footprint, (g)
equivalente array projection at φ = 0◦, and (h) radiation pattern at φ = 0◦ (wideband
response, BW=60%) .

(a) (b) (c) (d)

(e) (f) (g) (h)

Source: Author

coarray element. By the reciprocity principle, it can be considered that ser(t) is equal to sre(t),

introduce equivalent information in the beamformer and can be removed without any loss. The

respective coarray elements, ~Cer and ~Cre, occupy the same spacial space and, therefore, can be

considered redundant. Figure 41(a) illustrates the ACQ1 acquisition strategy, where the white

squares correspond to the combination of emitters e and receivers r used for acquisition. The

number of signals involved is reduced by almost half. Moreover, in order to reduce the number

of parallel channels and, consequently, the electronic resources, the acquisition strategy ACQ1

can be rearranged to create the ACQ2 alternative, as shown in Figure 41(b).

In the specific case of a 64 elements array, depicted in Figure 41, ACQ2 reduces the

number of signals involved from 4096 to 2080, and the number of receiver parallel channels

from 64 to 33. This structure can be reorganised to obtain a simpler electronic implementation.

Figure 42(a) illustrates a more compact representation of ACQ2, where the y-axis corresponds

to the 64 emitter elements and the x-axis the 33 receiver channels (A/D channels). Reciprocity

allows us to empty almost half of the acquisition matrix, and we can make a rearrangement of

columns to reduce the number of A/D converters needed. At each position of the matrix, the

coloured squares represent the receiver elements allocated for the respective emitting transducer

and A/D channel. It is possible to see from this matrix that channel 33 needs to access all 64

elements as it handles the pulse-echo signals. For the other converters, each column is filled
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Figure 41 – Matrix presentation of acquisition strategy (ACQ) for a generic array composed of
64 elements. White cells are the active channels. (a) ACQ1 - the reciprocity prin-
ciple has been applied to reduce the number of signals. (b) ACQ2 - the reciprocity
principle also has been used to optimise the electronic resources.

(a) (b)

Source: Author

with two receiver elements to implement the acquisition strategy ACQ2. For example, column

1, which corresponds to A/D converter 1, is filled at the bottom with receiver 33 and changes to

receiver 1 after emission 33. In this implementation, the 32 first receivers channels share each

only two different elements, and the multiplexer is simplified. Moreover, there are switched-off

receiver operations (white cells in Figure 42(a)) that occur because converter 33 is in charge of

these acquisitions.

In Figure 42(b), there is a model of the ultrasonic system based on this acquisition

strategy. In this case, the multiplexer is implemented in two independent nets controlled, each

one, by 64 switches. In one net, each receiver channel, from 1 to 32, is associated with two

transducers (the ith and (32+ i)th). In the other net, the 64 switches share the connection between

the pulser (emitter) and the 33 receiver circuit.

It is important to highlight that reciprocity does not depend on how the elements are

distributed, and it can be applied to linear and bidimensional configurations. However, some

caution should be applied in the distribution of the Tx/Rx pairs. For example, to avoid image

artefacts caused by non-linear and shadowing effects in the propagation medium, it is important

to distribute emission/reception pairs homogeneously to avoid the concentration of emitters (or

receivers) on one specific side of the aperture.

The coarray can be used to identify signals that introduce the same information in the

beamforming. In the case of the reciprocity principle, the elements ~Cer and ~Cre shares identical

position in the coarray and can be easily removed to create ACQ1 and ACQ2. This principle

can be applied to any array, but the hardware and data reduction are limited to marginally

half. In non-grid arrays, the superposition of the elements is rare, which turns difficult to find
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Figure 42 – Compact Representation of ACQ2 (a) and an ultrasonic acquisition system (b).

(a) (b)

Source: Author

and eliminates more signals that introduce redundancy. In this way, it is necessary to study a

different method to check redundancy in the coarray.

4.1.1 Identification of redundancy in the coarray

Redundancy is produced when a coarray position is filled by more than one coarray

element. In non-matrix distributions, where there is no-grid, once the reciprocity principle

is used, the positions of the coarray elements are rarely coincident (see Figure 40(b)), so all

of them should be considered as non-equivalent (non-redudant). Nevertheless, some coarray

elements could be considered equivalent for the beamforming process if there is a minimum

distance between them. This minimum distance can be evaluated by using the focusing delay

quantification theory (MAGNIN et al., 1981; PETERSON; KINO, 1984; STEINBERG, 1992),

which states that errors introduced by the quantification of focusing delays can be rejected as

long as they remain below ( λ32 )/c. Based on this, if the distance between two coarray elements

is less than λ
32 , we can consider that they introduce the same information in the beamforming

process. However, if sparsity is high, the redundancy revealed by this clustering operation is

very low, and a useful alternative is to study how redundancy is organised in the equivalent

linear array.

From the Projection-Slice Theorem (GASKILL, 1978), the narrowband beampattern of

a 2D array in a particular azimuth direction is determined by the projection of all the coarray
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elements on an axis along the same direction. In this sense, two elements ~Ce1 r1 and ~Ce2 r2 are

redundant in a given angle φ if:

|〈 ~Ce1r1 , (sinφ, cosφ)〉 − 〈 ~Ce2r2 , (sinφ, cosφ)〉| ≤
λ

32
, (38)

Although there is a specific solution for each azimuth angle, this strategy highlights

redundancy. And, if the whole azimuth domain is considered, a redundancy map can be created

and used to show the relationship between the different coarray elements at each azimuth angle.

Essentially, this is an unstructured Radon transform where the projected elements are clustered,

in sets, on a grid organised along the azimuth and radial axis. This grid is created respecting the

Nyquist criterion, which establishes that the resolution in the radial dimension is given by λ/2.

And, in the angular axis, the resolution is defined by the main lobe width of the coarray. Hence,

the angular discretization is given by φp:

φp =
1
2

arcsin
λ

2D
. (39)

This discrete grid is a matrix of sets shaped as Np × Ng, where the number of angles Np is:

Np =
⌈ 4π
arcsin(λ/(2D))

⌉

, (40)

and Ng is:

Ng =
⌈ 2D

λ/2

⌉

+ 1, (41)

Then, the coarray element Cer is stored in a set at [p, g] position if the following clustering

condition is met:
∣

∣

∣

∣

∣

〈

~Cer,
(

sin
(

kφp

)

, cos
(

kφp

))〉

− g
λ

2
− D

∣

∣

∣

∣

∣

<
λ

32
, (42)

This structure, named Coarray Projection Grid (CPG), can be used to study the redun-

dancy of any acquisition strategy and describes the potential of an aperture to be optimised.

Two parameters can be obtained from it: the occupancy rate of the CPG (Mo), which is the

percentage ratio between occupied locations and the total number of possible locations, and the

redundancy level (Mr), which is the mean number of signals per occupied CPG location and

indicates if an optimisation process can be performed. Figure 43 illustrates a CPG for an array

with N emitters and receivers, where each position [p, g] has the elements of coarray that meet

condition (42).

4.2 ACQUISITION STRATEGIES ALGORITHM

We define a particular acquisition strategy ACQ as a list of e-r pairs used to obtain the

data set. To evaluate its performance, we can use Mo, Mr and the number of signals involved



88

Figure 43 – Example of Coarray Projection Grid (CPG) where each [p, g] position contains a
set of coarray elements ~Cer that meet the condition (42)

Source: Author

(Ns). These values are computed with the help of a matrix named MAP, which has similar

dimensions as CPG and works as a counter to the number of elements at each respective grid

position.

For the ideal ACQ, all MAP positions should be filled with only one coarray element

(Mo = 100% and Mr = 1), meaning that the beampattern generated by this ACQ has the

maximum lateral resolution, as well as equivalent distribution of side lobes at each azimuth

angle.

In the case of a sparse array, the CPG is sparsely and irregularly filled and it cannot

achieve the ideal ACQ. However, we can reduce the number of signals involved by smoothing

the irregular shape. This can be achieved by eliminating overlapping coarray elements while the

occupancy Mo is maintained. With this objective, a two-step procedure is proposed to reduce

the number of signals and also consider hardware restrictions to optimise system resources.

4.2.1 Step one: Generation of the CPG database

First, FMC is used as ACQ. Then, the CPG is assembled and the occupancy level (Mo)

and redundancy level (Mr) are calculated. The Mo indicates how the aperture can fill the CPG,

and it is desirable that any proposed ACQ has the same Mo. The Mr indicates how much room

there is for optimisation. Although our objective is to reduce Mr maintaining Mo, this will also

reduce Mr and will also decrease averaging and the SNR.

To make programming tasks easier, we are going to reorganise the CPG structure in

another N×N matrix. Each [e, r] position of this new matrix, named Inverse Coarray Projection

Grid (ICPG), corresponds to the coarray element ~Cer. Inside each position, the different [p, g]

values that ~Cer satisfy using the condition (42) will be stored . The process to create the ICPG

database is defined in algorithm 1.

The ICPG makes it easier to evaluate the impact of a specific element on the acquisition

strategy, introduces specific conditions for the system (like avoiding specific elements), and
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Algorithm 1 Generation of the ICPG database
1: for e in range(N):
2: for r in range(N):
3: ICPG[e, r] = []
4: for p in range(Np):
5: Cbu f =

〈

~Cer, (sin (kφk) , cos (kφk))
〉

projected element
6: for g in range(Ng):
7: if (

∣

∣

∣Cbu f − gλ2 − D
∣

∣

∣ < λ
32)

8: ICPG[e, r].append([p, g])
9: return CPG database

simplifies the task of introducing information in the MAP.

4.2.2 Step two: Acquisition Strategy Design

The acquisition strategy optimisation is described in the algorithm 2, where the ACQ

is a list of Gc = [e, r] values that define the strategy (e emission transducer and r reception

transducer). This algorithm created is a simple case, where we only have a limited number of

emitters and parallel channels. However, it is straightforward to introduce other conditions such

as eliminating specific elements or using different elements for emission and reception.

The contribution of the ACQ to the projected coarrays is analysed in the MAP. The

proposed heuristic selects the emission/reception configuration (ACQ) that best fills the MAP

matrix with the minimum number of signals. The maximum number of allowed emitters and

parallel reception channels (MPD[0, 1]) is checked using a matrix of counters shaped as 2 × N

(PD in algorithm 2).

The algorithm initialises the MAP matrix, the PD and the sequence CAN of emission/

reception pairs. If there are no restrictions, CAN is initialised with all combinations of emitters

and receivers (FMC). The same happens for PD, where it can be used for several hardware

adjustments, like excluding specific elements of the receiver channels. After that, the algorithm

makes several loops. At each loop, the contribution of each coarray element (i0 = [e, r]) to MAP

is evaluated by how much information is introduced (the number of positions that are filled

where MAP[p, g] = [], FP counter) and by how much redundancy is introduced (positions

where MAP[p, g] , [], NFP counter). The process is controlled by Global Free Positions

(GFP) and Global Non-Free positions (GNFP) that are the counters of the candidate (Gc) to be

incorporated to ACQ. If the emission element e and reception r has free parallel channels, and

the pair [e, r] contributes with more information (FP > GFP) and less redundancy (NFP <

GNFP) to the MAP, it becomes a candidate (Gc = i0) and GFP and GNFP are updated. At

the end of the round, the candidate is attached to ACQ, the MAP and CAN are updated and a

new round begins with the remaining elements, until GFP = 0, which means that the sequence

can not fill more new MAP positions and adding more elements would increase redundancy.
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Algorithm 2 Algorithm for selecting the acquisition strategy(ACQ)
1: MAP = zeros(Np,Ng) Filling matrix
2: ACQ = [] initialisation acquisition strategy
3: GFP = 1, GNFP = 1 Global position counters
4: CAN = [] signal sets
5: for e in range(N):
6: for r in range(N):
7: CAN.append([e, r])
8: PD = zeros(2,N) Parallelism Degree per element counter
9: while (GFP > 0):

10: GFP = 0, GNFP = 0
11: for i0 in CAN:
12: if (PD[[0, 1], i0] < MPD[0, 1]).all: Tx:Rs parallelism check
13: NFP,FP = compute_FP(MAP,ICPG[i0])
14: if (GFP < FP)or((GFP == FP)and(NFP < GNFP)):
15: GFP = FP; GNFP = NFP;
16: Gc = i0
17: if (GFP > 0):
18: ACQ.append(Gc)
19: CAN.remove(Gc)
20: PD[0,Gc[0]]+= 1
21: PD[1,Gc[1]]+= 1
22: for i0 in ICPG[Gc]:
23: MAP[i0] = MAP[i0] + 1
24: return ACQ Acquisition Strategy

4.3 EVALUATION OF THE PROCEDURE

Two different arrays were chosen to evaluate the performance of the proposed tech-

nique. The first is a 64-elements Fermat spiral array (MARTÍNEZ-GRAULLERA et al., 2010),

where simulation was used to analyse it. The second is a 64-elements segmented annular ar-

ray (MARTÍNEZ et al., 2003), where simulation and several experimental ultrasonic images

were generated to verify the results. The proposed algorithm was evaluated by considering the

beampattern wideband response, the MAP occupancy level (Mo), the redundancy level (Mr)

and the number of signals involved (Ns).

From the beampattern, three lateral profiles are obtained at each elevation angle, the

maximum, the mean and the minimum values. In the following figures, for comparison between

the FMC and the examined designed strategy (ACQ), their acoustic field lateral profiles are

presented. The light grey areas (contoured by dashed lines) show the result of the ACQ, whereas

dark grey areas (contoured by solid lines) are related to the FMC. Furthermore, an inset shows

a detail of lateral resolution for small elevation angles.
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4.3.1 Fermat spiral array

The Fermat spiral array was designed with a diameter of 22λ, 64 elements and a diver-

gence angle α = 125.764◦, central frequency fc = 3.0 MHz, BW = 60%, operating in water

(c = 1500 m/s) and focused at 60 mm. The aperture and its beampattern are shown in Fi-

gure 44: (a) array footprint, (b) coarray structure, (c) acoustic pressure, and (d) lateral profile of

the acoustic pressure at each elevation angle (light grey area contoured by the dashed line).

The beampattern response (higher sidelobe profile) of a 64 elements matrix array, with

its elements spaced by λ/2 (8 × 8 matrix), is also illustrated in Figure 44 (d) with a solid line.

The matrix array has a similar dynamic range (−30 dB) and lowers lateral resolution than the

spiral array. The specific spiral distributions aim to spread the energy in large sidelobes regions,

avoiding a high concentration of energy. Thus, a higher lateral resolution is achieved with low

grating lobes (MARTÍNEZ-GRAULLERA et al., 2010; SCHWARTZ; STEINBERG, 1998). In

this case, the mean value of the spiral array is around −40 dB with a 5 dB deviation.

By clustering the coarray elements that are less than λ/32 apart, only six signals si j

are added to the set of redundant signals (initially made up of reciprocal elements). Using the

projections, the FMC occupies 40422 positions of the possible 49770 in the CPG structure;

that results in an Mo of 81% and an Mr of 7.23. If the reciprocity principle is used to create an

ACQ, which is named as RCP (see table 7), Mr is reduced to 3.68, which still indicates a very

redundant distribution.

Then, using the proposed heuristic, the first acquisition strategy, ACQ(64 : 64), is illus-

trated in Figure 45. In this example, MPD is defined using 64 emission elements and 64 parallel

channels (Tx : Rs = 64 : 64) and the signals considered redundant are eliminated. Compared

to the FMC, we achieved the same Mo with only 39% of the signals and a 59% reduction in

the Mr. Also, it has reduced the reception channels. The mean number of reception channels

per emission is 25, with a maximum of 32 and a minimum of 14. Furthermore, it employs 450

fewer signals than the RCP. Comparing the acoustic field of (64 : 64) with the original aperture,

we see that the sidelobe distribution has a flattened distribution with an overall increase of only

2 dB in comparison to the FMC (Figure 45).

Also in Figure 45(b), four parameters are illustrated and they will be used to compare

the lateral profile: the Dynamic Range (DR), in dBs, defined as the maximum sidelobe level

relative to the main lobe level; the ∆θDR, in degrees, defined as the main lobe width at the level

of DR; The Cross-Point (CP), in dB, defined by the level that the ACQ lateral profile crosses the

FMC lateral profile; and the -6 dB main lobe width ∆θ−6dB. It can be seen that the ACQ(64 : 64)

lateral resolution is higher than FMC’s until CP = −21 dB. The dynamic ranges are similar, and

∆θDR increases a bit, although the value of ∆θ−6dB is smaller for the ACQ(64 : 64). Additional

results for all MDP combinations analysed for the spiral array are summarised in Table 7, where

Ns is the number of signals selected and Nc is the maximum number of parallel channels for
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Figure 44 – The 64 element spiral. (a) array footprint, (b) coarray footprint, (c) acoustic pres-
sure in the semi-sphere [θ = 0◦ : 90◦, φ = 0◦ : 360◦] and (d) lateral profile showing
the distribution of the sidelobes in elevation. The dashed line represents the spiral
beampattern, and the light grey area within that line shows side lobe distribution
at each elevation angle. The solid line is the corresponding beampattern of a 64
element matrix array.

(a) (b)

(c) (d)

Source: Author

each strategy in reception.

The algorithm can limit the maximum number of emissions and receptions. To illus-

trate this, we defined the following MPD values for our acquisition strategies: ACQ(64 : 32),

ACQ(64 : 16), ACQ(64 : 8), ACQ(32 : 64) and ACQ(16 : 64). The first three strategies defined

that all 64 emitters elements can be used and the restriction of the algorithm is in the number of

parallel receivers, with a significant restriction in the (64 : 8) case. The matrix representations

of acquisition strategies obtained from the first three settings are illustrated in Figure 46(a), (b)

and (c), and their lateral profile are illustrated in Figure 47 (a),(b) and (c), respectively.

In ACQ(64 : 32), the results obtained are similar to ACQ(64 : 64)( see Table 7). The

number for parallel receivers is the same and, comparing the lateral profile of ACQ(64 : 32)

(Figure 47(a)) with ACQ(64 : 64) (Figure 45(b)), both strategies have almost the same response.
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Figure 45 – (a) strategy (64 : 64) for redundancy reduction. (b) sidelobe distribution at each
elevation angle for strategy (64 : 64) (light grey area within the dashed line) and
the FMC (dark grey area within the solid line).

(a) (b)

Source: Author

Table 7 – Fermat spiral array: performance for the FMC, RCP and all six strategies considered
(T x : Rx).

ACQ Mo Mr Ns Nc ∆θ−6dB CP (dB) DR (dB) ∆θDR

FMC 81% 7.23 4096 64 2.92o - −35 11.5o

RCP 81% 3.68 2080 33 2.92o - −35 11.5o

(64 : 64) 81% 2.93 1630 32 2.6o −20.9 −35.4 15.1o

(64 : 32) 81% 2.93 1631 32 2.6o −20.83 −36 14.0o

(64 : 16) 77% 2.03 1024 16 2.34o −20.75 −34 13.4o

(64 : 8) 59% 1.43 512 8 2.02o −21.69 −28.6 11.3o

(32 : 64) 77% 2.71 1444 50 2.6o −21 −33.8 12.0o

(16 : 64) 65% 2.02 984 60 2.66o −18 −31.9 12.8o

One remarkable fact, showing the benefits of the redundancy reduction, is that the response of

the FMC has worse ∆θ−6dB and slightly more sidelobes than ACQ(64 : 64)(Figure 45(b)) and

ACQ(64 : 32) (Figure 47(a)).

In ACQ(64 : 16) (Figure 47(b)), this configuration has vacant positions in the CPG (Mo

decreases to 77%). Although there is a small increase in all lateral profiles, and compared to the

FMC response, the sidelobes remain in a similar range. In ACQ(64 : 8) (Figure 47(c)), there

is a significant resource reduction by using only 12% of the available signals. In consequence,

the sidelobes are 5 dB higher than the FMC response. However, it is remarkable that ∆θ−6dB

becomes smaller for ACQ(64 : 16), even using fewer resources.
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Figure 46 – Acquisition matrix obtained from (a) ACQ(64 : 32), (b) ACQ(64 : 16) and (c)
ACQ(64 : 8).

(a) (b) (c)

Source: Author

Figure 47 – Sidelobes distribution at each each elevation angle for strategies (a) ACQ(64 : 32),
(b) ACQ(64 : 16) and (c) ACQ(64 : 16) (light grey area within the dashed line) and
the FMC (dark grey area within the solid line).

(a) (b) (c)

Source: Author

Figure 48 illustrates the matrix acquisition obtained from the ACQ(32 : 64) and ACQ(16 :

64). In this case, the number of emitters is limited. Mo for both cases decreases from 81% to

77% and 65%, respectively. The lateral profile for ACQ(32 : 64) (Figure 49(a)) stays in a

similar range compared to FMC, with a small increase in the mean value, but with a smaller

variance. Figure 49(b) shows the acoustic response for ACQ(16 : 64) strategy, whose sidelobes

rise above the FMC response and, comparing with ACQ(64 : 16), which has similar number of

used signals, it has worse response (Figure 47 (b)).

Consequently, one important conclusion is that limiting the number of emitters has more

consequences in the acquisition strategy than limiting the number of receiving parallel channels.

When one emission element is removed from the acquisition, instead of turning off only one

position of the acquisition matrix, it will turn off a full line in the acquisition matrix. In conse-

quence, there is less space for optimisation. On the other side, when the number of emissions
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Figure 48 – ACQ obtained from (a) the setting (32 : 64) and (b) the setting (16 : 64) .

(a) (b)

Source: Author

Figure 49 – Sidelobes distribution at each each elevation angle for strategies (a) (32 : 64) and
(b) (16 : 64) (light grey area within the dashed line) and the FMC (dark grey area
within the solid line).

(a) (b)

Source: Author

decreases, the imaging frame rate increases.

In our examples, the original dynamic range is maintained when the number of resultant

signals is higher than 25%. The only difference is from 10◦ to 20◦, where the amplitudes

generated by the FMC are considerably lower. When the reduction is more intense, the side

lobes’ intensities increase. In the case of the lateral resolution (∆θ−6dB), all of the strategies offer

higher values than the FMC until the crossing point (up to -20 dB). From this value, the lateral

resolution is higher for the FMC. This behaviour is a consequence of the smoother shape of

the coarray when the reduction is applied.



96

4.3.2 Segmented annular array - simulated and experimental results

4.3.2.1 Experimental setup

The experimental example is based on the segmented annular array described in (MAR-

TÍNEZ et al., 2003). The array prototype is illustrated in Figure 50(a) and was manufactured at

CSIC laboratory. It has been designed for nondestructive testing of metallic parts, but in work,

it is operating in water Figure 50(b). The array ( fc = 1.5 MHz, BW = 20%) is composed of 64

elements that are organised in three rings, has a 20 mm diameter (in water 20λ), the center of

the elements are spaced by 2 mm (in water 2λ) and element size is 1.5×1.5 mm (in water 1.5λ).

Figure 50(c) illustrates the segmented annular array element distribution and (d) is the

corresponding coarray. In order to obtain a more accurate response in our simulation model,

the differences in the energy radiated per element and the element radiation pattern were taken

into account. Comparison between experimental data and simulations are based on images

from a spherical reflector. Figure 50(e) shows a simulated image of a point reflector and

Figure 50(f) illustrates the experimental image, both set at Z = 40 mm, X = [−25 : 25] mm

and X = [−25 : 25] mm and using the FMC and T FM. With this configuration, in water,

experimental results show a lateral resolution of 5◦ and a dynamic range, limited by grating

lobes at 30◦, of 20 dB. The differences between simulated and experimental images are due

to anomalies in the radiation pattern of the real aperture and the diffraction response of the

reflecting sphere. Furthermore, this probe shows significant variations in element-to-element

sensitivities, reaching up to 4 dB, which increases the sidelobes level intensities.

4.3.2.2 Synthetic aperture strategies

After clustering the coarray elements, 109 signals meet the λ/32 condition. The CPG

matrix has 10, 542 positions (Np = 251 and Ng = 42) fills 66% (Mo) with a Mr = 5.45.

The RCP configuration works as illustrated in Figure 41. The configurations designed for this

example are: ACQ(64 : 64), ACQ(64 : 24), ACQ(64 : 16) and ACQ(64 : 8). Figure 51

illustrates the acquisition strategies: the acquisition matrix, simulated and experimental images

of a point/spherical reflector, and a detail of the lateral profile of the maximum beampattern

(simulated and experimental). Table 8 summarises several parameters used to evaluate the

performance of each strategy.

The ACQ(64 : 64) and ACQ(64 : 24) strategies solutions show similar beampatterns,

where the sidelobes remained at -30 dB level. For the ACQ(64 : 16) and ACQ(64 : 8) strategies,

there was an increase of the sidelobes of 5 dB and 10 dB, respectively. We notice that the model

predicts the impact of Mo reduction, which increases the sidelobes level (STEINBERG, 1976).

Meanwhile, grating lobes, around 28◦, kept at approximately the same level for all strategies,

with a slight increase when Mo is reduced. Mainlobe width is also maintained for all strategies,
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Figure 50 – Segmented annular array. (a) Array prototype; (b) experimental setup in water,
array faced downwards and a 3 mm-diameter spherical reflector placed 40 mm
from the array; (c) element distribution, (d) coarray footprint. Image of a (e) point
reflector (simulated) and (f) 3 mm-diameter metallic sphere (experimental) both
placed at [X=−25 : 25 mm, Y=−25 : 25 mm, Z=40 mm].

(a) (b)

(c) (d)

(e) (f)

Source: Author
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Table 8 – Segmented Annular Array. Performance for the (64 : 64), (64 : 24), (64 : 16) and
(64 : 8) settings. Simulated and experimental data included for ∆θ−6dB, DR (dB) and
∆θDR.

ACQ Mo Mr Ns Nc

∆θ−6dB DR (dB) ∆θDR

Sim. Exp. Sim. Exp. Sim. Exp.

(64 : 64) 66% 1.8 1536 29 2.80◦ 3.17◦ -20.86 -18.91 6.40◦ 6.96◦

(64 : 24) 60% 1.5 1286 24 2.81◦ 3.20◦ -20.51 -18.59 6.21◦ 6.38◦

(64 : 16) 52% 1.3 1024 16 2.82◦ 3.21◦ -20.79 -17.41 6.40◦ 6.70◦

(64 : 8) 35% 1.2 512 8 2.71◦ 3.10◦ -20.59 -18.12 6.73◦ 10.02◦

as observed from ∆θ−6dB and DR (dB) from table 8.

Regarding the resource optimisation, when compared to the ACQ(64 : 64), the ACQ(64 :

24) has a 6% reduction in Mo, reducing the parallel channels (Nc) in five, and the number of

selected signals (Ns) by 250. A significant signal reduction (512) is achieved while Mo is

maintained above 50%, from ACQ(64 : 64) to ACQ(64 : 16). The ACQ(64 : 8) produces a

significant reduction in the value of Mo (35%), but the secondary lobes increase to the level of

the grating lobes, as can be noticed in Figure 51(d). There are no dramatic changes in dynamic

range (DR) because the array structure is maintained, and is limited by the grating lobes.

4.4 DISCUSSION

The design of a synthetic aperture imaging system should consider a balance between

the number of parallel channels, the number of signals in the beamforming, the number of shots

to capture all data needed per image, and the multiplexer complexity. In this sense, synthetic

imaging beamforming can exploit popular parallel computation resources to obtain 3D imag-

ing at a relatively low cost, using multicore or GPGPU (General-Purpose Graphics Processing

Units). Parallel GPGPU beamforming for 4096 signals can generate a frame rate of 66 images/s

(265×256 pixels) (ROMERO-LAORDEN et al., 2016), being possible to generate two volumes

per second (128 × 128 × 128 voxels). Considering a maximum number of signals (Ns) of 1024,

the GPGPU beamforming can generate up to ten volumes per second. However, to support this

volume rate, we need to limit the acquisition operations by reducing the number of emitters and

the volume of data transferred per shot to the processing system (parallel receiver channels).

Using this information, we analyse, by simulations, two strategies for the Fermat spiral array:

ACQ(42 : 24) and ACQ(32 : 32).

Figure 52 illustrates the two proposed acquisition strategies and shows the lateral profile

of the acoustic field, where dark grey corresponds to the acoustic field of the FMC. Although

the acoustic pressure is similar for the two configurations, it is possible to see that the reduction

in the number of shots has a worse impact than the reduction of parallel channels in reception.
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Figure 51 – Results for the segmented annular array obtained from ACQ (a) (64 : 64), (b)
(64 : 24), (c) (64 : 16) and (d) (64 : 8), where the acquisition strategy, the sim-
ulated point reflector, the experimental metallic sphere image (cylindrical coordi-
nates: Z = 40 mm R = [0 : 25] mm, θ = [0o : 360o]), and the image reflectiv-
ity (maximum at each elevation angle) are illustrated, respectively. For the image
reflectivity, the simulated response is illustrated in the dashed line and the experi-
mental result in the solid line.

(a)

(b)

(c)

(d)

Source: Author
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Figure 52 – Results obtained from ACQ (a) (42 : 42), and (b) (32 : 32), where the acquisition
strategy is presented on the left, the sidelobe distribution at each elevation angle
for strategies is illustrated at the centre, and the configuration of the multiplexer
net showing, at each shot, the distribution of reception transducer in the reception
channels is illustrated in the right. For the sidelobe distribution, the current ACQ is
represented in a light grey area within the dashed line, and the FMC is represented
as a dark grey area within the solid line.

(a) ACQ(42 : 24)

(b) ACQ(32 : 32)

Source: Author

The results are summarised in Table 9, where FMC and RCP are also listed. In both

cases, there was a reduction in Mo from 81% to 75% and 74%, respectively. The sidelobe

distribution is comparable to the FMC, so, in practice, the image quality is maintained in a

similar range. However, the number of signals Ns is reduced to less than half when compared to

RCP (2080 to 1008), which means a significant cost reduction in processing. Lateral resolution

is also better for the proposed strategies, as can be observed from ∆θ−6dB.

The last challenge is the design of the multiplexer net. In our example, the efficient

design of the RCP needs up to 128 switches. However, a reduction in the number of receiver

channels or/and in the number of emissions has an increment in the number of transducers

that has to be attended by each receiver channel (in consecutive shots). In consequence, the

multiplexer net becomes more complex. In Figure 52 the multiplexer matrix is presented for
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Table 9 – Spiral array: FMC, RCP, ACQ(42 : 24) and ACQ(32 : 32) acquisition strategies
results.

ACQ Mo Mr Ns Nc ∆θ−6dB CP (dB) DR (dB) ∆θDR

FMC 81% 7.23 4096 64 2.92o - −35 11.5o

RCP 81% 3.68 2080 33 2.92o - −35 11.5o

(42 : 24) 75% 2.02 1008 24 2.34o −21 −33.4 12.9o

(32 : 32) 74% 2.05 1024 32 2.42o −20.6 −33.11 14o

both solutions. The configuration ACQ(42 : 24) needs 201 switches in reception and 42 in

emission. In the case of the configuration ACQ(32 : 32) it needs 246 in reception and 32 in

emission (see Nc in Table 9). These nets have been optimized to reduce the number of switches

using an ad-hoc algorithm, linking transducers to specific A/D converters. In general, we can

say that the reduction of parallel resources has a cost in complexity in the multiplexer.

Although the ACQ(42 : 24) has a significant reduction in the hardware resources

(around 25%), the ACQ(32 : 32) is about 30% faster than ACQ(42 : 24). Additionally, the

analysis of the beampattern, based on lateral resolution and dynamic range of both ACQ (see

table 9), shows that they have similar behaviour.

4.5 COMMENTS

In this work, we have shown, based on the concepts of the Radon transform and the

equivalent linear array, how to study the coarray spatial redundancy of non-grid 2D sparse arrays

like spirals or annular rings. Furthermore, we have developed a process to exploit this spatial

redundancy to reduce the electronic resources and the computational cost of the beamforming

operations of the synthetic aperture system. It has been shown that, with an adequate selection

of signals, the resources of an imaging system can be reduced without significant degradation

of the original FMC dynamic range. However, the reduction of redundancy makes the coarray

shape smoother, which increases the lateral resolution but also increases the secondary lobes.

This procedure improves the capabilities of the system designer to control the perfor-

mance of sparse arrays based on spirals and other non-grid patterns. Restrictions can be im-

posed, such as in the number of parallel channels and the number of emission elements. Other

conditions, like eliminating specific elements, can also be applied, which could be the case

due to malfunctioning transducers and, consequently, this process can be used to design fault-

tolerant solutions. And finally, it can provide a measure of the aperture information quality

that could be useful for the design/development of new beamforming methods based on sparse

coarray reconstruction. In addition, based on the redundancy generated by the reciprocity, a

generic solution with an efficient multiplexer design has also been presented.

The proposed methodology provides a solution to developing systems with low re-
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sources, which can be easily embedded in complex or autonomous systems. Considering

ACQ(64 : 16), this solution uses only 16 receiver channels, 64 emitters, and one transmitter.

Then, according to the standard electronic integration levels of the market, we can design a quite

simple aperture that integrates the electronic front-end close to the transducer, reducing electri-

cal noise, as well as interconnection and communication problems. This opens the possibility

of developing instrumentation integrated into the internet of things systems for nondestructive

testing applications.
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5 2D SPARSE ARRAY EVALUATION

In this chapter, a new method for designing sparse bidimensional arrays based on non-

grid apertures is proposed. The occupancy rate (Mo) and redundancy level (Mr) of the coarray

projection grid (CPG) created in the previous chapter are studied to determine how these pa-

rameters influence the radiation wideband response. Then, a FF is created to evaluates non-grid

apertures and the simulated annealing algorithm is used to find different sparse bidimensional

arrays based on the spiral Fermat array and the segmented annular array.

5.1 FITNESS FUNCTION BASED ON CPG

In the previous chapter, the proposed heuristic selects different combinations of emitters

and receivers to create an acquisition strategy for non-grid apertures for synthetic aperture. The

heuristic finds a set of signals (emitter and receivers) that most fill a Coarray Projection Grid

(CPG) with reduced redundancy. Two figures of merit are used to measure the occupancy level

(Mo) and the redundancy level (Mr) of the CPG, where a relationship between these two features

with the radiation pattern wideband response started to be constructed.

The analysis helped to understand that reducing Mr maintaining the Mo creates acquisi-

tions that have a wideband RP with a slightly better lateral resolution, but it has higher energy

intensities from 10 to 20◦, compared to FMC. For larger angles, the side lobes intensities re-

mained similar. These two parameters can be used to create a fitness function (FF) that is able

to evaluate different non-grid sparse arrays only using spatial analysis, which removes the need

to use the energy irradiated by an array or PSF.

There are disadvantages of using the energy irradiated by an array to design an aperture,

which justifies using the elements’ position. In the narrowband response, which is a Fourier

transform of the array elements position, the irradiated energy is amplified to the worse situ-

ation. The sidelobes have high amplitudes, and the grating lobes have the same magnitude as

the main lobe, which turns hard to create a function that quantifies the radiation pattern. In

real applications, the elements are excited with wideband pulses, different from the narrowband

pulses (continuous waves) considered in this simulation method. Moreover, this response does

not correctly represent the energy irradiated by asymmetrical arrays.

An asymmetrical matrix sparse array with 150 elements is illustrated in Figure 53 (a),

where the radiation pattern narrowband response is illustrated in (b). Pairs of circles with match-

ing colours are used to highlight that this response is symmetric, although the sparse array is

not. Moreover, the amplitudes of this response at 0◦ (dashed line) are plotted in (c), where it

is possible to see this symmetry at the centre. Although the array is asymmetrical, the energy

response is symmetric and fails to represent the array energy.

This simulation method has this issue that does not appear with the wideband radiation
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pattern response, as seen in (d), where the highlighted areas aid to see. However, in the wide-

band radiation pattern response, it is required to define the ultrasonic pulse response of a single

element, which can restrain the array operation to a determined centre frequency and excitation.

At last, the PSF could be used as happened in chapter 3. Nevertheless, the PSFs in 2D arrays are

still computationally costly to calculate. In this way, it is reasonable to use the array element’s

position to create a fitness function that evaluates different sparse arrays to design and find a

sparse configuration with good features. To develop this FF, it is interesting to deeply analyse

how (Mo) and (Mr) are linked to the radiation pattern response to give an idea to combine these

two parameters.

Figure 53 – (a) Asymmetrical matrix sparse array, (b) Radiation Pattern narrowband response,
(c) Line extracted at 0◦ of the narrowband response and (d) Radiation Pattern wide-
band Response with the amplitudes extracted at 0◦.

(a) (b)

(c) (d)

Source: Author

5.1.1 Mo and Mr analysis

The Fermat spiral array is a non-grid array where a good element distribution is achieved

(MARTÍNEZ-GRAULLERA et al., 2010). The elements are distributed following (43), where
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α is the divergence angle, and ϕ is the initial phase used to create different emitter and receiver

apertures.

~ei = (R0 i cos(αi + ϕ), R0 i sin(αi + ϕ)), ∀ i = 1, ...,N, (43)

where R0 is defined as:

R0 =
D

2
√

N α
, (44)

where D is the aperture dimension and N is the number of elements in the array.

To analyse Mo and Mr, different sparse arrays were created by selecting a different

number of elements emitting and receiving from a Fermat-based spiral array with 360 elements,

where the divergence angle α is 160.875◦ and ϕ is 0◦. The spiral array with 40λ its illustrated in

Figure 54, where its radiation pattern is illustrated in (b). This array is also expanded to a 60λ

diameter, where the energy irradiated by the array is illustrated in (c).

Figure 54 (d) is the lateral profile of both radiations, where the blue continuous lines

correspond to the 40λ diameter array, and the red dashed lines correspond to 60λ diameter. It

is possible to see that the lateral energy remained almost at the same level for both arrays, and

the main lobe is narrower in the wider array. For the radiation pattern simulations, the centre

frequency of the ultrasonic pulse simulated was defined as fc = 1.5 MHz, operating in water

(c= 1500 m/s), sample frequency fs = 40 MHz and BW = 0.6.

The 40λ spiral array with 360 elements has an Mo of 0.93 and Mr of 84.94. The 60λ

spiral has an Mo of 0.92 and Mr of 56.61. These 360 spiral arrays will be used as an array model

where different numbers of emitters and receivers are selected.

For the 40λ array, different apertures were created by selecting 128 and 192 elements,

where half of the elements (64 and 96) work as emitters and the other half as receivers. For

the 60λ array, 256 elements were selected, where 128 are emitters and 128 are receivers. The

arrays were named 128/40λ 192/40λ, and 256/60λ. Table (10) gives the information about the

selected apertures. Three cases were selected for each setting aiming apertures with high Mo,

high Mr and a more balanced Mo and Mr.

In Figure 55, three radiation patterns of configurations 1, 2 and 3 of setting 128/40λ in

Table (10) are illustrated. The first configuration, illustrated in Figure 55(a), has a high Mo. The

amplitudes aside the main lobe decline to about -25 dB at the first stage and then to -35 dB.

In configuration-2, where the radiation pattern is illustrated in (b), the Mr is higher, but Mo is

lower than the configuration-1. The amplitudes aside the main lobe at the first stage are higher

than Figure 55(a) staying about -18 dB, but it declines faster to about -45 dB.

Figure 56(a) illustrates the lateral profile of the two configurations analysed (1 and 2).

It is possible to see that, at first, configuration-1 has lower amplitudes (see I), but afterwards,
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Figure 54 – (a) 360 Elements Fermat Spiral Array with 40 λ diameter ( λ = 1 mm) and α =
160.875◦. (b) the radiation pattern of the spiral array. (c) the radiation pattern of
the spiral array with the same setting, but elements placed in a 60 λ diameter. (d)
the lateral profile of the two radiation patterns.

(a) (b)

(c) (d)

Source: Author

Table 10 – Mo and Mr results of different configurations

Settings Configuration Mo Mr

128/40λ
1 0.84 4.08
2 0.66 5.00
3 0.71 4.69

192/40λ
1 0.91 10.42
2 0.66 13.63
3 0.77 12.85

256/60λ
1 0.90 12.90
2 0.78 15.08
3 0.88 13.01

there is a crossing point where the amplitudes of configuration-2 decrease faster and have lower

amplitudes (see II).

The rapid decrease in the amplitudes in configuration-2 compared to configuration-1
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Figure 55 – Radiation pattern wideband response of the three sparse arrays with 64 elements
emitting and 64 elements receiving with 40λ diameter, where the Mo and Mr infor-
mation are given in Table (10). (a), (b) and (c) are generated using configurations
1, 2 and 3, respectively.

(a) Configuration-1 (b) Configuration-2 (c) Configuration-3

Source: Author

is a consequence of higher Mr. It is a desired feature in ultrasonic images as it means that

the amplitudes asides the reflector imaged will rapidly decrease, which increases the image

contrast. The M0 is lower in configuration-2, which has wider main lobe width that translates

to worse lateral resolution than configuration-1.

It is subjective and hard to see the difference between the side lobe distribution by

looking at the lateral distribution. One strategy developed in this chapter compares pixel by

pixel two radiations patterns and extracts statistical information about the distribution of pixels.

For example, in one pixel of the RP of configuration-1, the amplitude is -45 dB. In the same

pixel in the RP of configuration-2, the amplitude is higher at -35 dB. These two values are

combined to create a coordinate (-45,-35) that is plotted in a Cartesian plane.

Figure 56(b) illustrates these amplitudes distribution comparing the RPs pixel by pixel.

The amplitudes in red represent the main lobe intensities, which are the first and second points

asides the maximum intensity (0 dB). In blue, the amplitudes correspond to the side lobes. The

amplitudes corresponding to the x-axis are generated using configuration-1 and, on the y-axis,

the amplitudes corresponding to configuration-2. A line ( f (x) = x) is also illustrated in black

and helps to analyse the amplitudes distributions.

The regions I and II highlighted in the lateral profile in (a) are illustrated in (b). It is

possible to see in (b) that the amplitudes corresponding to I appear above the black line, which

are referred to as positive values. In region II, it is possible to see that the amplitudes are located

below the black line in the negative region.

Two values are extracted from this amplitude distribution. The first, is the percentage

distribution, which is the percentage number of elements in the negative and positive regions

using the black line as reference. For example, using only the amplitudes in region-I in Fi-
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Figure 56 – (a) lateral profile of configuration 1 and 2 of 128/40λ and (b) the radiation pattern
comparison.

(a) (b)

Source: Author

gure 56(b), 100% of the points are in the positive region, which means that for this area anal-

ysed, the radiation pattern generated using configuration-1 has lower amplitudes compared to

the RP generated using configuration-2. In region II, all amplitudes are in the negative area

(100% in negative). If regions I and II are analysed together, 50% of the points are in the

positive, and 50% in the negative area.

The other parameter is the mean of the distances from the points (x,y coordinates) to

their projection in the black line. This parameter indicates the dominance of one radiation

pattern over the other. For example, in the main lobe analysis, considering the region I and II, the

percentage distribution is 50/50 %, and the means are -5.90/4.04. The value -5.90 indicates the

mean distance of the negatives points to its projections in the black line. This higher mean value

for the negative points, compared to the positive mean, indicates that when the amplitudes of

RP configuration-2 are lower than the amplitudes of RP configuration-1, the difference between

them is higher than when the amplitudes of RP configuration-1 are lower than the amplitudes

of RP configuration-2. These two parameters help to compare two radiation patterns in lateral

resolution and side lobes intensities.

Two values are extracted from this amplitude distribution. First, is the percentage distri-

bution, which is the percentage number of elements in the negative and positive regions using

the black line as reference. For example, using only the amplitudes in region-I in Figure 56(b),

100% of the points are in the positive region, which means that for this area analysed, the

radiation pattern generated using configuration-1 has lower amplitudes compared to the RP ge-

nerated using configuration-2. In region II, all amplitudes are in the negative area (100% in

negative). If regions I and II are analysed together, 50% of the points are in the positive, and
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50% in the negative area.

The other parameter is the mean of the distances from the points (x,y coordinates) to

their projection in the black line. This parameter indicates the dominance of one radiation

pattern over the other. For example, in the main lobe analysis, considering the region I and II,

the percentage distribution is 50/50 %, and the means are -5.90/4.04. The -5.90 indicates the

mean distance of the negatives points to its projections in the black line. This higher mean value

for the negative points, compared to the positive mean, indicates that when the amplitudes of

RP configuration-2 are lower than the amplitudes of RP configuration-1, the difference between

them is higher than when the amplitudes of RP configuration-1 are lower than the amplitudes

of RP configuration-2. These two parameters help to compare two radiation patterns in lateral

resolution and side lobes intensities.

In Table 11, the percentage distribution and mean for the main lobe and side lobes are

given for all combinations of the configurations in Table 10. In the "combination" column, the

first number corresponds to the image on the x-axis, linked to the negative percentage and mean.

The second number corresponds to the image on the y-axis, related to the positive percentage

distribution and mean. The higher the percentage or mean, the worse one RP is compared to

the other. These two tables will help to understand how Mo and Mr are linked to the radiation

pattern and create a mathematical function that evaluates sparse apertures.

Table 11 – Main Lobe and Side Lobe distribution analysis for the spiral array with 40 and 60 λ.

Main Lobe Information Side Lobe Information
Settings Combination Neg/Pos (%) Mean Neg/Pos (%) Mean

128/40λ
1-2 50/50 -5.90/4.04 45/55 -1.76/1.97
1-3 57/43 -3.45/1.40 46/54 -1.83/1.91
2-3 56/44 -3.41/3.41 54/46 -1.90/1.88

192/40λ
1-2 50/50 -6.04/6.51 39/61 -1.97/2.40
1-3 51/49 -7.94/3.13 43/56 -1.81/2.10
2-3 91/09 -2.98/0.56 53/47 -1.90/1.88

256/60λ
1-2 50/50 -7.18/4.32 46/54 -1.96/1.97
1-3 65/35 -1.19/1.76 50/50 -1.58/1.66
2-3 50/50 -6.83/3.66 55/45 -1.83/1.88

The first result is the radiation pattern combination of configurations 1 and 2. For the

main lobe, the percentage distribution remained equal for the two radiations, where the mean is

higher for the negative part. For the side lobes amplitudes, configuration-2 generates a radiation

pattern with higher amplitudes compared to configuration-1, which can be concluded from the

higher percentage distribution and mean. This is due to the lower Mo of configuration-2, which

has more grating lobes interference that increases the side lobes intensities in the radiation

pattern response.

Configuration 1 and 2 of 128/40λ are two extremes of the Mo and Mr values. Both have

their qualities, Configuration-1 has a RP with lower sidelobes intensities, and in configuration-



110

2, the amplitudes rapidly decrease asides the main amplitude. Configuration-3 is the balance

of Mo and Mr that tries to have both qualities of configurations 1 and 2. By looking at Ta-

ble 11, configuration-3 generates an RP with a better main lobe compared to configurations

1 and 2, where the percentage is higher for the negative area in both combinations (57% and

56%, respectively). The mean is higher for configuration-1 (-3.45 over 1.40) and the same for

configuration-2 (3.41).

When compared to configuration-1, the configuration-3 response has, in some areas,

lower amplitudes right aside the main lobe, which is illustrated as region I in Figure 57(a) and a

rapid decrease in the main lobe intensities, highlighted in region II. However, the side lobes are

higher in configuration-3 as the percentage in the positive area is 54%. When compared with

the configuration-2 response (Figure 57(b)), configuration-3 has lower amplitudes right next the

maximum point (region I) and declines slower than the configuration-2 response, but in some

areas configuration-3 response has lower amplitudes (region II). The side lobe amplitudes of

configuration-3 are lower as the percentage is 46% for the positive region.

Figure 57 – Radiation Pattern comparison, only the main lobe analysis. (a) Combination 1-3
(b) Combination 2-3.

(a) (b)

Source: Author

The radiation pattern of configuration-3 is a mixture of characteristics of configuration

1 and 2 radiation pattern responses. It seems that apertures with an equilibrium of Mo and Mr

will have a radiation pattern with a balance between the main lobe and side lobe intensities.

To check if this trend occurs, the same analysis was done for the apertures with 192/40λ and

265/60λ elements.

For the 192/40λ, configuration-1 has a high Mo, configuration-2 a high Mr and configu-

ration-3 a balance between these two parameters. The radiation pattern of these configurations
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are illustrated in Figure 58 where (a), (b) and (c) are generated using the configuration 1, 2 and

3, respectively. The configuration-1, with the highest Mo, has the lowest amplitude asides the

maximum amplitude, but the amplitudes decay slower than the RP of configuration-2 illustrated

in (b). This behaviour is similar to configurations 1 and 2 of 128/40λ analysis. The higher Mo,

the lower the amplitudes next the maximum amplitude, but with a slow decline. The higher Mr,

the faster the amplitudes will decline, but the amplitudes right next the maximum increase.

The side lobe distribution is worse in the RP generated using configuration-2, where

61% of the amplitudes in this RP are higher than the generated using configuration-1. Configu-

ration-3 try to balance these two parameters. Comparing configurations 2 to 3, in Figure 58(c),

the amplitudes aside the maximum are 91% lower than in (b), and the amplitudes rapidly decay.

The sidelobe distribution is worse than in (a), with 56% of the amplitudes higher in configura-

tion 3, but better than in (b), with 53% of the amplitudes higher in configuration 2.

Figure 58 – Radiation pattern wideband response of the three sparse arrays with 96 elements
emitting and 96 elements receiving with 40λ diameter, where the Mo and Mr infor-
mation are given in Table (10). (a), (b) and (c) are generated using configurations
1, 2 and 3, respectively.

(a) Configuration-1 (b) Configuration-2 (c) Configuration-3

Source: Author

For the 256/60λ apertures, the first configuration has a high Mo. The radiation pattern

of this aperture, illustrated in Figure 59(a), shows the same characteristics as the apertures with

high Mo. The same happens to the aperture with high Mr (configuration-2), where the radiation

pattern illustrated in (b) has higher amplitudes next the maximum point, but rapidly declines.

The side lobes are 54% lower for the radiation pattern in (a).

The configuration-3 radiation pattern is illustrated in (c) where the Mo is slightly lower

than configuration-1 (0.88 and 0.90) and Mr is slightly higher (13.01 compared to 12.90) . When

the main lobe is analysed, 65% of the amplitudes are lower for the radiation pattern generated

by configuration-3, and the side lobes have the same proportional distribution. Compared to

the configuration-2 radiation pattern, the main lobe distribution is equally distributed because

the closest to the maximum amplitudes are lower in configuration 3, but it has a slowing decay
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Figure 59 – Radiation pattern wideband response of the three sparse arrays with 128 elements
emitting and 128 elements receiving with 60λ diameter, where the Mo and Mr infor-
mation are given in Table (10). (a), (b) and (c) are generated using configurations
1, 2 and 3, respectively.

(a) Configuration-1 (b) Configuration-2 (c) Configuration-3

Source: Author

characteristic. This is the same situation that happened when configurations 1 and 2 of 128/40λ

were compared, where region I is higher for one RP and region II higher for the other.

Apertures with a balanced Mo and Mr appear to have adequate radiation pattern res-

ponses. A high Mo assures an energy reduction caused by the grating lobes’ interference and

helps to increase the lateral resolution. A high value of Mr helps to create the main lobe in the

radiation pattern with a rapid magnitude decrease.

It is desirable an aperture with high Mo and Mr. However, in this case where the ele-

ments are selected from an aperture, these two figures of merit are inversely proportional. When

the elements in the array are selected to maximize Mo, Mr decreases, and vice-versa. It is de-

sirable to create a mathematical function that considers these two parameters. This function

needs to balance the importance of these two parameters, and one way to create this balance is

by multiplying these two parameters. In this way, the proposed function created in this work is

given as:

FF = M(k1)
o M(k2)

r , (45)

where k1 and k2 are arbitrary weights used to give more importance in higher Mo or higher Mr

but will be set to 1 in this work.

This FF evaluates the non-grid apertures considering the Mo and Mr parameters. The

idea is to use this function with an optimization algorithm to find sparse apertures that generate

images with high lateral resolution and low artefact intensity. In this way, an optimization

problem is set where elements from the 360 spiral array are selected to maximize the FF given

in (45).
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5.2 PROBLEM FORMULATION AND SEARCH ALGORITHM

The problem is formulated as a binary optimization problem where a solution with ones

and zeros indicates if an element of the 360 elements spiral array model is selected or not. The

optimization problem is defined as:

max
ARe,ARr

MoMr

s.t. sum(ARe) = N

sum(ARr) = N

ARe ∈ [0, 1]

ARr ∈ [0, 1],

(46)

where ARe and ARr are two binary vectors that corresponds to an emitter array (ARe) and a

receiver array (ARr). The fitness function defined in (45) evaluates the solution, and the binary

solutions have a constraint in the number of elements selected subject to (s.t) a value N, which

is a number defined at the beginning of a search.

The optimization method selected to solve this problem is the stochastic algorithm Sim-

ulated Annealing. This algorithm is based on the annealing process, which consists of heating

an object to an extreme temperature and slowly cooling it to alter the physical properties of a

material. The algorithm mimics this behaviour considering that the object is a current solution,

and the temperature is the probability of a worse solution being updated as the current solution.

Initially, the algorithm has a high probability of a worse solution being accepted as a current

solution, mimicking the cooling process. This helps to increase diversification and prevents the

search algorithm to stay at a local optimum (KIRKPATRICK et al., 1983).

The Simulated Annealing is presented in the Algorithm 3. First, initial parameters such

as the final cooling temperature are defined. Then, the algorithm generates an initial solution

as a starting point to find better solutions and calculate its FF. In the loop stage, a new solution

is generated and evaluated. If this new solution is better than the current solution, the current

solution is updated. Moreover, if this new current solution is better than the best solution, this

solution is updated.

If the new solution is worse than the current solution, a neighbour of the FF solutions is

calculated so it can be used in a probabilistic acceptance criterion to update the current solution

with this worse new solution. This probabilistic acceptance criterion is calculated in the if clause

in line 13. Tk is the cooling factor that mimics the annealing principle. As the iterations increase,

the probability of accepting a new solution that is worse than the current solution decreases. In

this way, the algorithm starts with a high chance of accepting worse results that help to explore

the search space and diversify the search. If this worse new result is not accepted, a counter

increments at the point where temperature Tk and Nk are updated.
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Algorithm 3 Simulated Annealing
1: Define Initial Parameters

2: Generete First Solution

3: Evaluate the Solution

4: While(Stop_Criteria(Tk)):
5: Generate a new Solution

6: Evaluate the new Solution

7: if(FFNewS olution>FFCurrentS olution):
8: Update the solution:

9: if(CurrentSolution>BestSolution):
10: Update the Best Solution:

11: else:

12: dif = FFNewS olution-FFCurrentS olution

13: if(e−di f /Tk > RandomNumber (0 to 1)):
14: Update the solution:

15: else:
16: i = i + 1
17: ifi > Nk

18: Tk = βTk

19: Nk = ρNk

5.3 FERMAT SPIRAL OPTIMIZATION

The optimization strategy works by selecting emitters and receivers elements of the 360

array model, which creates a binary search problem. The solution has 720 positions, 360 for the

emission elements (first half) and 360 in reception. When the value in one, the corresponding

element in the 360 arrays is selected to work. Four parameters need to be arbitrarily defined,

which is the case of β, ρ, Nk and Tk. β is the cooling factor of the algorithm, which is 0.15, ρ is

the changing factor set to 5, Nk is initially 10, and Tk is 90.

The simulated annealing requires creating a function that generates new solutions. The

function implemented in this work randomly swaps a position that is 1 to a place that is 0. It is

equivalent to randomly turning off one element in the array and selecting another. The algorithm

was used to find three apertures: 128, 192 and 256, which is the number of elements and size

studied during the FF design.

Figure 60 illustrates the current best result found by the algorithm during the optimiza-

tion phase. In (a), the 128/40λ aperture, in (b), the 192/40λ aperture and, in (c), the 256/60λ

aperture. As the number of elements in the array increases, the optimization converges faster

with fewer iterations.

Table 14 gives the Mo, Mr and their multiplication (FF) for the configurations 1, 2 and 3

and the optimized aperture for their respective settings. The MoMr results are the highest for the

optimized apertures, and it is possible to see a balance between Mo and Mr in these optimized

apertures.
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Figure 60 – Optimization convergence. (a) 128/40λ, (b) 192/40λ and (c) 256/60λ.

(a) Spiral 128/40λ (b) Spiral 192/40λ (c) Spiral 256/60λ

Source: Author

Table 12 – Mo, Mr and MoMr of different configurations with different settings and their opti-
mized aperture.

Settings Configuration Mo Mr MoMr

128/40λ

1 0.84 4.08 3.42
2 0.66 5.00 3.30
3 0.71 4.69 3.32

Optimized 0.82 4.24 3.47

192/40λ

1 0.91 10.42 9.37
2 0.66 13.63 8.99
3 0.77 12.85 9.89

Optimized 0.85 12.07 10.25

256/60λ

1 0.90 12.90 11.61
2 0.78 15.08 11.76
3 0.88 13.01 12.15

Optimized 0.86 14.24 12.24

The radiation pattern of these optimized apertures are given in Figure 61, where the 128,

192 and 256 elements optimized array are illustrated in (a), (b) and (c), respectively. Although

the apertures have a high Mo, the amplitudes aside the maximum point rapidly decrease, which

indicates that the ultrasonic images generated by these arrays will have a better contrast.

The amplitudes of the radiation patterns can be compared to the other configurations

to see the improvement in the main and side lobe distribution. Table 15 gives the percentage

distribution and mean of the radiation patterns comparing the optimized sparse array with the

configurations analysed before. In all cases, the optimized aperture is defined for the x-axis,

which is the negative percentage/mean.

Overall, it is possible to see that the optimized aperture has a better main lobe distri-

bution compared to the other apertures. In all cases, the percentage was higher in the positive

region, which corresponds to configurations 1, 2 and 3.
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Figure 61 – Radiation pattern wideband response of the spiral optimized arrays. (a) 128, (b)
192 and (c) 256 elements array.

(a) 128/40λ (b) 192/40λ (c) 256/60λ

Source: Author

Table 13 – Main lobe and side lobe distribution analysis. Optimized aperture vs configurations
1,2 and 3.

Main Lobe Information Side Lobe Information
Settings Combination Neg/Pos (%) Mean Neg/Pos (%) Mean

128/40λ
Opt-1 04/96 -0.44/3.35 50/50 -1.48/1.71
Opt-2 47/53 -3.37/7.38 43/57 -1.62/1.99
Opt-3 29/71 -2.15/3.49 44/56 -1.65/1.89

192/40λ
Opt-1 11/89 -0.76/4.19 56/44 -1.86/1.82
Opt-2 20/80 -3.69/5.87 42/58 -1.79/2.06
Opt-3 40/60 -3.30/4.17 48/52 -1.75/1.84

256/60λ
Opt-1 39/61 -1.05/5.37 49/51 -1.76/1.94
Opt-2 28/72 -3.03/3.15 45/55 -1.84/1.90
Opt-3 20/80 -0.95/4.15 51/49 -1.77/1.87

The mean, in its absolute values, is lower for the negative region. This means that, when

selecting one point in the negative area, it is more probable that the difference between the

ordinate and abscissa is smaller than when a point in the positive region is selected. Figure 62

illustrates the radiation pattern comparison of the combination Opt-1 in the 128/40λ setting,

where the mean values for the main lobe are -0.44/3.35 for the negative and positive regions,

respectively.

Two points were selected, one in the negative and the other in the positive area. In

the negative region, the point has the coordinate (-39.6,-40.5), which means that in one pixel

of the RPs the amplitude in the RP generated by the optimized aperture is -39.6 dB and in the

configuration-1 is -40.5 dB. This difference is lower when comparing the positive point selected,

which has a coordinate (-39.6,-31.8). The mean value is a figure of merit that shows dominance

of one radiation pattern over another, and it is possible to see that the optimized response has

more dominance in the configurations RP.

Analysing the side lobe distribution, there are two cases where the amplitudes propor-
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Figure 62 – Radiation pattern comparison between the optimized 128/40λ aperture and
configuration-1 of 128/40λ .

Source: Author

tion is higher in the optimized aperture, in combination Opt-1 in setting 192/40λ and Opt-3

in setting 256/60λ. These configurations (1 192/40λ and 3 256/60λ) have higher Mo values

that contribute to the grating lobes suppression resulting in lower intensities compared to the

optimized configurations. However, in both cases, the main lobe was better for the optimized

aperture, where the amplitudes were 89% and 80% lower in the optimized array radiation pat-

tern.

The optimization algorithm with the proposed fitness function was able to find apertures

that have adequate coverage in the CPG matrix with high redundancy. When the radiation

pattern of the optimized apertures was compared to configurations 1,2 and 3 with different

settings, the optimized apertures generated a radiation pattern with better qualities with lower

and rapid main lobe decreased and lower side lobes intensities.

The spiral array has a good element distribution where randomly selecting elements in

the 360 array would create an aperture with an acceptable radiation pattern. To check if the FF

works with a different aperture, an optimization problem using the proposed FF was designed

to create different segmented annular arrays.

5.4 SEGMENTED ANNULAR ARRAY OPTIMIZATION

The segmented annular array is a type of array where the elements are placed in rings.

At each ring, the elements are equidistant to each other (MARTÍNEZ et al., 2003). Figure 63

(a) illustrates an 128 elements sparse segmented array. The array has 20 radii but only 8 are

filled with elements. In each selected radius, there are 16 elements equidistant to each other.

The radii elements in this array are placed in phase ϕ = 0◦, but, in (b), the elements in the radii

are randomly phased.
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Figure 63 – Segmented annular array example with 128 elements distributed in 8 radii. (a) radii
in phase. (b) radii randomly rotated.

(a) In Phase (b) Phase Shifted

Source: Author

An optimization problem can be created where the algorithm will select several radii in

a grid. These radii are pre-defined and coded into a binary vector, where one means that the

respective radius is selected to create the sparse array. With the optimization problem defined

in this way, the simulated annealing algorithm with the proposed FF can be used. Three types

of arrays will be created based on the previous results (128,192/40λ and 256/60λ).

The radii grid was arbitrary pre-defined starting from 1.50λ to 20λ for the 40λ diameter

aperture and 1.50λ to 30λ for the 60λ diameter aperture. In both grids, the increasing step is

0.5λ. The algorithm selects eight radii for the emitter elements and eight radii for the receiver

elements. The number of elements is equal for all radii, and the phase between the radii is

randomly set.

In Table 14, the Mo, Mr and their multiplication are given for the spiral and segmented

annular optimized apertures. In all cases, the segmented annular array has higher FF values.

This array has a higher degree of freedom to place the elements compared to the spiral array,

which made it possible to find apertures with better FF.

Table 14 – Mo, Mr and MoMr of spiral and segmented optimized array.

Settings Array Type Mo Mr MoMr

128/40λ
Spiral 0.82 4.24 3.47

Annular 0.78 6.01 4.68

192/40λ
Spiral 0.85 12.07 10.25

Annular 0.87 12.09 10.51

256/60λ
Spiral 0.86 14.24 12.24

Annular 0.85 14.50 12.32
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The radiation pattern of the three segmented annular apertures is illustrated in Figure 64,

where the amplitudes aside the main lobe in the RP for these arrays are uniformly distributed as

the elements in the radii are equidistant.

Figure 64 – Radiation pattern wideband response of the segmented annular optimized arrays.
(a) 128, (b) 192 and (c) 256 elements array.

(a) 128/40λ (b) 96/40λ (c) 128/60λ

Source: Author

Table 15 gives the percentage and mean comparing the radiation pattern of the spiral

with the segmented annular optimized array. Overall, the segmented annular array radiation

pattern achieved a lower main and side lobe distribution. In the 256/60λ comparison, the main

lobe percentage distribution is 50%. However, the mean is higher for the negative region,

which means that the amplitudes in the segmented annular response are considerably lower

compared to the spiral response. This can be seen in Figure 64 (c), where the amplitude asides

the maximum point is close to -47 dB compared to the amplitudes of the optimized spiral which

are about -30dB.

Table 15 – Main lobe and side lobe distribution analysis. Spiral array vs segmented annular
array

Main Lobe Information Side Lobe Information
Combination Neg/Pos (%) Mean Neg/Pos (%) Mean

128/40λ Spiral-Annular 70/30 -2.1/1.6 54/46 -2.10/1.79
192/40λ Spiral-Annular 62/38 -2.76/1.11 61/39 -2.39/1.79
256/60λ Spiral-Annular 50/50 -14.18/4.34 82/18 -2.64/1.75

The segmented annular array has more degree of freedom that enables to find apertures

with better FF compared to the spiral array. Looking at the percentage distribution and the

mean, the radiation pattern of the segmented annular array has narrowed the main lobe with

lower side lobes. There are some factors that need to be better established that might help to

find better configurations. For example, the phases between the radii are randomly defined, but

they can also be optimized.
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5.5 COMMENTS

In this chapter, the Mo and Mr parameters were studied to establish a relationship be-

tween these spatial parameters with the radiation pattern wideband response. After this study,

a fitness function was proposed and used with the simulated annealing algorithm to find spiral

and segmented annular array. In the optimized spiral arrays, the apertures found generated a

radiation pattern with better characteristics compared to the ones studied (configurations 1, 2

and 3). In the segmented annular array, the optimized apertures had better radiation pattern

characteristics compared to the spiral arrays.

Although the goal was achieved, the method needs some refinement in the future. The

influence of the weights k1 and k2 set to one need to be studied, and perhaps create a method to

define these weights based on the number of elements and aperture diameter. The optimization

algorithm also needs to be changed, the neighbourhood generator function created in this work

randomly swaps the elements and this random operation might be limiting the algorithm to find

better apertures.
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6 FINAL COMMENTS AND FUTURE WORK

6.1 RECAPITULATION AND APPLICATIONS

In this work, different aspects of ultrasonic imaging systems are improved using search

techniques. At first, stochastic algorithms found configurations of sparse linear arrays, where

a new codification method and the RP FF helped to find configurations with lower FF than

those presented in the literature. Afterwards, sparse arrays’ analysis enables us to verify that

the RP FF has problems distinguishing which sparse arrays would generate high or low-quality

images. Considering this problem, a new FF based on the PSF was proposed. This FF was

used to find different sparse configurations where it was possible to check that this FF can

distinguish how better a sparse array would generate an image based on the reduction of the FF

value. Comparing the configurations found using the two FF, the ones based on the PSF balance

the lateral resolution and contrast better than the RP FF.

Although the linear array systems already work with hundreds of elements, there are

some applications for sparse linear arrays. These arrays require less energy to operate when

compared to FPA with the same length. Therefore, an ultrasonic system that works in a region

with restricted energy access, such as inside rain forests or in health care in impoverished areas,

can use sparse linear arrays to save energy. The system might use a smartphone as a processing

core and energy source.

Moreover, the design of sparse linear arrays enables the re-use of ultrasonic transducers

with few elements malfunctioning. A sparse array can be designed where the broken elements

and others are removed from the imaging system. In consequence, the ultrasonic probe is re-

used, helping extend its lifetime. These applications help the health access in developing/poor

countries and increase health quality worldwide.

In the second part of the thesis, a heuristic creates acquisition strategies for synthetic

aperture systems. The algorithm analyses the projections of the coarray elements that most

fill a grid matrix with low redundancy to build an acquisition. Different acquisitions for spiral

Fermat and annular segmented arrays were analysed, which overall indicated that signals can

be removed from the imaging system without much loss in the image quality.

At last, during the development of the acquisition strategy, two parameters were cre-

ated to verify the occupancy and redundancy of an array in a grid. These two parameters were

studied to check their influence on the radiation pattern response. Understanding its influence,

a fitness function was created, and the simulated annealing algorithm was used to create sparse

arrays in two setups. First, the elements in a pre-defined spiral array were selected using the

algorithm. Then, the metaheuristic selected different radii of a grid to create an annular seg-

mented array. The results of the radiation pattern analysed indicated that the optimized spiral

array has better characteristics compared to the spiral where the elements were randomly se-
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lected. When compared to the optimized annular segmented array, the radiation pattern of these

arrays had better qualities compared to the spiral Fermat array. It was possible to use spatial

measurements to evaluate sparse arrays based on non-grid arrays.

2D arrays create volumetric images without the need to sweep the transducer. It is

possible to manufacture transducers with thousand of elements using CMUT, and the problem

is to handle the data volume, electronic resources and acquisition time required to generate

an image. Non-grid apertures have a better spatial element distribution compared to matrix

arrays, achieving lower side lobes intensities and high lateral resolution using fewer elements.

The acquisition strategy proposed reduces the acquisition time and data volume to generate

an image, which enables the creation of real-time ultrasonic applications using the synthetic

aperture technique.

The proposed 2D sparse array design method reduces the number of elements used

in a pre-defined array. With this element reduction, phased array systems, which are used

worldwide, can handle the number of elements in the sparse array. Moreover, the acquisition

strategy technique can be used in the sparse array to reduce the resources required to manage the

2D transducer and create a real-time ultrasonic system based on a synthetic aperture technique.

Each part of the work helps to improve ultrasonic imaging systems by reducing the

resources involved. In consequence, the data volume, electronic complexity, acquisition time

and time to generate images are also reduced, enabling the use of ultrasonic images for different

applications.

6.2 CONTRIBUTIONS

The highlights of this thesis are:

• A review in ultrasonic array simulation for linear and bidimensional array and imaging

strategies.

• A study in continuous metaheuristics and a codification strategy that helped to find better

sparse linear arrays.

• A new FF applied to linear sparse array design that correctly evaluates the arrays.

• A heuristic that builds an acquisition strategy for synthetic aperture for non-grid arrays.

• A study in spatial parameters and how it is linked to the radiation pattern wideband re-

sponse.

• A optimization strategy to design sparse non-grid for Fermat spiral and annular segmented

arrays
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6.4 FUTURE WORKS

Non-grid arrays can be designed using the linear sparse array optimization algorithm

presented in Chapter 3. This increase in the degree of freedom might contribute to the quality

of the sparse linear array image, especially related to sidelobes reduction. The designed 2D

arrays should be experimentally tested, but there are practical difficulties related to array man-

ufacturing and costs. Another possible application is in the inspection of plate-like structures

using Lamb waves, where the elements do not necessarily need to be placed in a linear fashion

but can be distributed along the plate surface. Another idea is to use the acquisition strategy



124

proposed in Chapter 4 in the optimized apertures found in Chapter 5 to reduce even more re-

sources. At last, the design of 2D apertures can be enhanced by considering the optimization of

the phase in the annular segmented array.
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APPENDIX A – SEARCH PROBLEMS AND METAHEURISTICS

Metaheuristics are stochastic algorithms used to find solutions for optimisation prob-

lems that are NP-Hard, which are problems that increase exponentially and requires consid-

erable computing effort to be solved (GLOVER, 1986). Most of the time, metaheuristics are

interpreted as a black box optimizer applied to an optimization problem. The reason why is that

metaheuristics are complex and has their only field of study.

To understand the basics of optimisation problems and therefore understand why me-

taheuristics, a simple example can be analysed. First, let’s considerer a variable x that can

assume any real value, defined as the search space. Then, defining a fitness function (FF) as a

second-degree equation, an optimization problem is set as trying to find the value of x that has

the minimum value of FF.

In this case, the results (image) of the function is known and illustrated in Figure 65(a).

A simple method to find the minimum value of this function FF is to start in any solution (x0)

and move to another solution that returns a lower FF value. If this is done consecutively, the best

solution xv in this problem is found. This strategy is named Gradient Descendent and, although

it is simple, in convex spaces the best solution is guaranteed to be found (GERON, 2019).

This example is straightforward because the possible results converge to a valley. If FF

is changed and the image assumes the results illustrated in Figure 65(b), the strategy adopted

maybe not find the best results (global minimum). Instead, it would stay at a local minimum.

Figure 65 – Search Space. (a) Image of a second-order equation. (b) Image of a different FF
where there are minimums that the search algorithm can be stuck.

(a) Quadratic FF (b) FF with local minimum

Source: Author

In real problems, it is impossible to calculate all the FF for all solutions and find the
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global minimum. Therefore, alternatives such as metaheuristics are used to intelligently test so-

lutions and find the best ones. These algorithms try to escape from the local minimums and test

differents areas by using two strategies, intensification and diversification (NESMACHNOW,

2014).

During the intensification stage, the algorithm proposes solutions near to the current

solution and calculate their FF. Then, using probability, this new solution maybe will turn into

a current solution. In the diversification stage, the difference from the intensification is that

the solutions proposed are located far from the current solution. An illustration of these two

processes is given in Figure 66 (a), where at x0 the intensification process is applied. After four

iterations, diversification is used, and the current solution that was in the left jump to the right

in the search space.

In this example, the search was not able to find the global minimum. It stopped in a

valley. Real applications have this problem, in which the best solution found is not guaranteed

to be the global minimum. The challenge is to identify what is restraining the algorithm and

propose alternatives to bypass this problem. In Figure 66 (a), for example, the stop criteria,

which is the condition used to stop the search, could be used earlier. Maybe, if the search had

continued, the local minimum would be found.

A more realistic search is illustrated in Figure 66 (b), where i it is possible to see differ-

ent valleys where the algorithm might be stuck during the searching process.

Figure 66 – Search Space. (a) illustration of intensification and diversification process in meta-
heuristics. (b) real representation of a searching problem.

(a) Intensification and Diversification (b) Example of real problems

Source: Author

In the example, the search is defined in the continuous domain, where also x could

assume any real value. However, depending on the problem, the search space needs to be
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constrained, and if a proposed solution is not acceptable, strategies can be used to make it

acceptable. Moreover, some optimization problems are defined in a discrete (binary) domain,

where the proposed solutions are vectors of zeros and ones (BEHESHTI; SHAMSUDDIN,

2013).

The metaheuristics vary from each other in different ways, mainly in the strategy to

intensify, diversify. However, some metaheuristic, such as particle swarm optimization (KE-

NNEDY; EBERHART, 1995), were designed to work in continuous domain. Other algorithms,

such as the Genetic algorithm (HOLLAND, 1992), were designed to work with binary search.

When defining a search problem, the representation of the solution needs to be taken into ac-

count so we can select an algorithm. Furthermore, another challenge in search problems is to

create a FF that can correctly quantify the solutions x.

In this appendix, the main concepts of a search problem were presented, where the

challenges of local minimums were illustrated. We also commented that the metaheuristics are

used to intelligently test the solutions of a search problem as in real applications is impossible to

test all solutions. Also, we present the intensification and diversification process and comment

that metaheuristics vary from each other mainly in these two stages.
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