
ANALYSIS OF THE CRYSTALS-KYBER IMPLEMENTATION
ENCUENTRO DE ÁLGEBRA COMPUTACIONAL Y APLICACIONES

Diego Rojas Rodríguez1,2∗, Luis Hernández Encinas 1†

� 1Institute of Physical and Information Technologies (ITEFI), Spanish National Research Council (CSIC)
� 2Complutense University of Madrid (UCM)
∗diegroja@ucm.es, †luis.h.encinas@csic.es

†0000-0001-6980-2683
EACA 2024

1. INTRODUCTION AND KYBER IMPLEMENTATION
CRYSTALS-Kyber (or just Kyber) is a lattice-based KEM (Key Encapsulation Mechanism)
whose security relies on the hardness of the Ring Learning With Errors (RLWE) problem.
RLWE is a version of the Learning With Errors (LWE) problem defined on the polynomial ring
Rq = Zq[x]/⟨xn + 1⟩, where n ≤ 256 is the polynomial degree and q = 3329 = 13 · 28 + 1
is a prime number.
Kyber is composed by two main primitives: a Public Key Encryption (PKE) with its
corresponding key generation, cipher and decipher algorithms, and a set of functions
that conform the KEM via the Fujisaki-Okamoto transform resulting key generation,
encapsulation, and decapsulation algorithms. Additionally, PKE uses several functions,
among which we highlight Compress (and Decompress) and NTT (Number Theoretic
Transform). The reference implementation in Kyber’s proposal was done in language C.
This decision might be motivated due to C is the fastest programming language when
coding at a low level, even though it may carry some side effects given the lack of native
operations for dealing with polynomials.

2. COMPRESS AND DECOMPRESS FUNCTIONS
The Compress and Decompress functions are defined as follows:

Compressq(x,d) = 2d

q
x mod 2d, Decompressq(x,d) = q

2d
x mod q,

where q is the prime used in the definition of the ring Rq, d is an integer parameter determined
by the security of Kyber’s implementation and x is the coefficient to be compressed. Both
functions aim to discard some bits of the keys whose influence is negligible, and thus
shortening key size and as they have similar properties. Some operations, not defined
natively in C, needed to be adapted giving raise to the following disparities (see Figure 1):

1 The function compresses all coefficients of the polynomial at once.
2 Each signed polynomial coefficient is mapped to its positive representative in binary

(C2 operation).
3 Multiplication by 2d is efficiently performed by arithmetically shifting to the left d

positions.
4 Kyber_Q/2 is added and later divided by q (integer division)
5 The resulting number is then operated with an AND (&) with the number 15 (1111),

equivalent to performing the mod 24 operation.
Figure 1 – poly_compress function in poly.c

The result after performing one iteration of the loop is equivalent to the function:

poly_compress(x,d) = |x|2
d

q
+ q

2
mod 2d.

3. NTT (NUMBER THEORETIC TRANSFORM)
It is known that an essential operation and one of the most time consuming for the RLWE
problem is the polynomial multiplication over Rq. To improve its efficiency the NTT (Number
Theoretic Transform) is used. To multiply two polynomials over Rq they are transformed to
the NTT domain, then operated and finally transformed back to the original domain. We
have x256 + 1 =

∏127
i=0 x2 − ζ2i+1 =

∏127
i=0 x2 − ζ2br7(i)+1 where each ζ i represents a 256-th

root of unity. Using the NTT and its inverse, NTT−1, it is possible to efficiently compute
the product of two polynomials in Rq, given that NTT−1(f̂ · ĝ) = NTT−1(ĥ) = h = f · g.
The implementation of the NTT is shown in Figure 2, where the roots of unity are previously
calculated and stored in the matrix zetas.
Moreover, we can see that in the mathematical definition, as well as in the implementation,
the process is iterative. In Figure 2, len represents the distance to which the operations are
performed, this is why we define k = 7 − log2(len).

3. NTT (NUMBER THEORETIC TRANSFORM) (CONT.)
Figure 2 – NTT process in the implementation in C

Given that len = 27 − k, the further in the process the smaller is the operating distance.
Variable start represents over which index of the vector len steps are made. Finally, j
represents the index of the vector over which each individual operation is executed, always
between j and j + len. The start takes values which are multiples of len from 0 to
256, meaning the nested loop is executed 2k times for each value of len. The last loop
performs the multiplication of zeta and the corresponding value r[j + len], in the interval
[start + len, 2 · len] with len − start iterations. Lastly, the transform adds each value to
its symmetrical over len and subtracts it to the indexed value in the previous step. Figure 3
shows how the loop is executed in the implementation.

Figure 3 – Process of the NTT in the implementation

It can be appreciated how each iteration of k is represented with a row and each value of
start with a colour. Variable j would be the one iterating over each coloured block, indexing
one by one j = j + 1. After a coloured block, start is increased start = j + len until
start = start + 2 · len that will start the next row. The arrows point which blocks are
swapped, for each index i with its representative in the other block (starting from 0 in each
block). Next step would be proposing a mathematical function that execute the process of
the implementation in order to compare it to the original NTT. Representing each index of
the vector by i and each iteration of the loop by k, knowing that len = 27 − k, we define
the auxiliary recursive function φi,k as follows:

φi,0 = fi + ζfi+128, 0 ≤ i < 128, φi−128 − ζfi, 128 ≤ i < 256,

φi,k = φi,k−1 + ζ
2k+

i

28−kφi+27−k,k−1, φi,k = φi−27−k,k−1 + ζ
2k+

i

28−k
φi,k−1

.

Finally, the starting call would be f̂i = φi,6. This way the base cases would represent the
first iteration of the loop, when len = 128, and the following iterations, 0 < k < 7, are
determined by their parity in each iteration of start, or start + len. That is, i

27−k
mod 2

represents the division of the vector in intervals of length len and the mod 2 indicates
whether its the left or right side. Each of the 128 zeta values is represented given that
k and i can be at most 6 and 255 respectively. Ultimately, one can appreciate that the
definition in the code greatly differs from the original one. This could be one of the main
reasons why side-channel attacks usually target the NTT in Kyber.

4. CONCLUSIONS
The differences shown between the mathematical definition, presented in the reference
document of Kyber, and the official implementation, made by the original authors, are non
negligible. These differences could lead to vulnerabilities that allow side-channel attacks
that exploit them. We have highlighted the differences we spotted in our first analysis.

ACKNOWLEDGEMENTS
This work was supported in part by P2QProMeTe project (PID2020-112586RB-I00), funded by MCIN/AEI/10.13039/501100011033,
and in part by QURSA project (TED2021-130369B-C33) funded by MCIN/AEI/10.13039/501100011033, both co-funded by the
European Union “NextGenerationEU”/PRTR.

mailto:\textcolor {white}{diegroja@ucm.es}
mailto:\textcolor {white}{luis.h.encinas@csic.es}
https://orcid.org/\textcolor {white}{0000-0001-6980-2683}

