Pasar al contenido principal

Main navigation

  • Sobre El ITEFI
  • Investigación
  • Formación y empleo
  • OpenLab
  • Servicios científico técnicos
  • Directorio

A 3D analysis of the acoustic radiation force in microfluidic channel with rectangular geometry

Standing waves
ultrasound
Acoustic radiation force
Optimized Forest–Ruth algorithm
A.Vargas-Jiménez, M.Camacho, J.D.Muñoz, I.González
Wave Motion, Volume 101, 2021, 102701
https://doi.org/10.1016/j.wavemoti.2020.102701

Particles or cells in suspension and exposed to ultrasonic waves experience an acoustic radiation force (FR) which, under certain conditions, drives them toward positions of acoustic equilibrium. In this paper, we present a three-dimensional model of the particle motions within the acoustic field generated by ultrasonic standing waves. This model allows a theoretical study of the three-dimensional FR induced by a standing acoustic wave in a microfluidic chamber with rectangular geometry on micrometer-sized spherical particles. The approach models the agglomeration process and the behavior of particle clusters in the acoustic field. To achieve this, expressions for the 3D FR are obtained as the time-average of a gradient of the acoustic potential established within the chamber with two different sets of boundary conditions. The particle motion under the action of this force was analyzed assuming a non-viscous fluid and a particle size much smaller than the acoustic wavelength. The 3D force expressions were used in a simulation employing an optimized Forest–Ruth algorithm to derive the dynamics of N spherical particles. This work provides novel results that predict some particle motion toward chamber or channel walls and the formation of pearl-chain aggregates within channels. These particle movements and the aggregate formation process were observed experimentally in an acoustic device built to assess the validity of the theoretical predictions.

Keywords: Standing waves; Ultrasonic; Acoustic radiation force; Optimized Forest–Ruth algorithm

This research was supported and funded by the Institute of Physical Technologies and Information ITEFI-CSIC, España, through project COOPA20348, I-COOP+2018 and by the Administrative Department of Science, Technology and Innovation of Colombia , Colciencias, through project 222856 933541, conv. 569-2012. We thank Dr. Michael Delay, IDEX Health & Science (Semrock), for comments, suggestions, and assistance with the manuscript.

RESULT

proyecto/s relacionado/s

  • Estudio de Propiedades Físicas de Promastigotes y Amastigotes de Leishmania en Cultivos en capilares microfluídicos mediante Ultrasonidos
    Programa i-COOP (CSIC)
Departamento de Acústica y Evaluación No Destructiva (DAEND)
  • GAA: Grupo de Acústica ambiental
  • G CARMA: Grupo de Caracterización de materiales mediante evaluación no destructiva
  • ULAB: Ultrasonidos para el análisis de líquidos y bioingeniería
Departamento de Tecnologías de la Información y Las Comunicaciones (DTIC)
  • GiCP: Grupo de investigación en Ciberseguridad y Protección de la Privacidad
  • GICSI: Grupo de investigación en Criptología y Seguridad de la Información
    • LCQE: Laboratorio de Comunicaciones Cuánticas
  • PSUM: Grupo de Procesamiento de Señal en sistemas Ultrasónicos Multicanal
Departamento de Sensores y Sistemas Ultrasónicos (DSSU)
  • GSTU: Grupo de Sistemas y tecnologías ultrasónicas
  • NoySI: Grupo de Nanosensores y Sistemas Inteligentes
  • RESULT: Resonadores ultrasónicos para cavitación y micromanipulación
  • SENSAVAN: Grupo de Tecnología de Sensores Avanzados
  • QE: Electrónica Cuántica
Laboratorios
  • Laboratorio de Acústica
  • Laboratorio de Metrología Ultrasónica Médica (LMUM)
  • Laboratorio de Comunicaciones Cuánticas
  • Laboratory for International Collaboration in Advanced Biophotonics Imaging

Instituto de Tecnologías Físicas y de la Información Leonardo Torres Quevedo  - ITEFI
C/ Serrano, 144. 28006 - Madrid • Tel.: (+34) 91 561 88 06  Contacto  •  Intranet
EDIFICIO PARCIALMENTE ACCESIBLE POR PERSONAS CON MOVILIDAD REDUCIDA