Pasar al contenido principal

Main navigation

  • Sobre El ITEFI
  • Investigación
  • Formación y empleo
  • OpenLab
  • Servicios científico técnicos
  • Directorio

Acoustophoretic trapping of particles by bubbles in microfluidics

microfluidics
acoustofluidics
trapping
particles
bubbles
lab-on-a-chip
acoustic tweezers
Itziar González, Manuel Candil and Jon Luzuriaga
Front. Phys., Sec. Physical Acoustics and Ultrasonics. Volume 11 - 2023
https://doi.org/10.3389/fphy.2023.1062433

We present in this paper a simple method to produce strategic acoustic particle capture sites in microfluidic channels in a controlled way. Air bubbles are intermittently injected into a micro-capillary with rectangular cross section during a flow motion of liquid suspensions containing micron-sized particles or particles to create bubble-defined “micro-gaps” with size close to 200 µm and spheroidal geometry. The establishment of a 3D standing acoustic wave inside the capillary at a frequency close to 1 MHz produces different radiation forces on solid particles and bubbles, and acoustic streaming around the bubble. While the sample flows, part of the particles collect along the acoustic pressure node established near the central axis and continue circulating aligned through the capillary until reaching the end, where are released enriched. Meanwhile, the bubble travels very fast toward positions of maximum pressure amplitude beside the channel wall, driven by Bjerkness forces, and attach to it, remaining immovable during the acoustic actuation. Some particles adhere to its membrane trapped by the acoustic streaming generated around the oscillating bubble. Changes of frequency were applied to analyze the influence of this parameter on the bubble dynamics, which shows a complete stability once attached to the channel wall. Only increasing the flow motion induces the bubble displacements. Once reached the open air at the end of the capillary, the bubble disappears releasing the trapped particles separated from their initial host suspension with a purity degree. The device presents a very simple geometry and a low-cost fabrication.

Funding: This work is financed by the Spanish National Plan project PID2021-128985OB-I00 funded by the Spanish Ministery of Science and Innovation MICINN and CSIC-Intramural project.

RESULT

proyecto/s relacionado/s

  • NUEVA TECNOLOGÍA NO INVASIVA PARA INHIBICIÓN DE CRECIMIENTO DE TUMORES SÓLIDOS MEDIANTE ULTRASONIDOS DE BAJA INTENSIDAD
    Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023
Departamento de Acústica y Evaluación No Destructiva (DAEND)
  • GAA: Grupo de Acústica ambiental
  • G CARMA: Grupo de Caracterización de materiales mediante evaluación no destructiva
  • ULAB: Ultrasonidos para el análisis de líquidos y bioingeniería
Departamento de Tecnologías de la Información y Las Comunicaciones (DTIC)
  • GiCP: Grupo de investigación en Ciberseguridad y Protección de la Privacidad
  • GICSI: Grupo de investigación en Criptología y Seguridad de la Información
    • LCQE: Laboratorio de Comunicaciones Cuánticas
  • PSUM: Grupo de Procesamiento de Señal en sistemas Ultrasónicos Multicanal
Departamento de Sensores y Sistemas Ultrasónicos (DSSU)
  • GSTU: Grupo de Sistemas y tecnologías ultrasónicas
  • NoySI: Grupo de Nanosensores y Sistemas Inteligentes
  • RESULT: Resonadores ultrasónicos para cavitación y micromanipulación
  • SENSAVAN: Grupo de Tecnología de Sensores Avanzados
  • QE: Electrónica Cuántica
Laboratorios
  • Laboratorio de Acústica
  • Laboratorio de Metrología Ultrasónica Médica (LMUM)
  • Laboratorio de Comunicaciones Cuánticas
  • Laboratory for International Collaboration in Advanced Biophotonics Imaging

Instituto de Tecnologías Físicas y de la Información Leonardo Torres Quevedo  - ITEFI
C/ Serrano, 144. 28006 - Madrid • Tel.: (+34) 91 561 88 06  Contacto  •  Intranet
EDIFICIO PARCIALMENTE ACCESIBLE POR PERSONAS CON MOVILIDAD REDUCIDA