Pasar al contenido principal

Main navigation

  • Sobre El ITEFI
  • Investigación
  • Formación y empleo
  • OpenLab
  • Servicios científico técnicos
  • Directorio

Assessing the broadband absorption properties of micro-capillary plates through modelling and experimental studies

acoustics
absorbentes acústicos
fluid flows
Teresa Bravo and Cedric Maury
Proc. Mtgs. Acoust. 42, 040002 (2020)
https://doi.org/10.1121/2.0001380

Helmholtz-type resonance absorbers constitute noise control devices widely used in many areas that have attracted attention in the last years due to the advancement of acoustic metamaterials. Micro-perforated panels placed over a backing cavity work on the same principle at low frequencies. They can provide important absorption values but confined in a narrow frequency band. To overcome this limitation, unbacked configurations have been considered, but care has to be taken for a proper selection of their constitutive parameters. In this work, freestanding micro-perforated plates with holes diameters down to 10 micrometers and high perforation ratio are shown to be good candidates as wideband low-frequency sound absorbers. Several micro-capillary plates, classified as a function of the Knudsen number, are studied analytically and experimentally. Most of the porous microsystems that use gases work in slip-flow regime whose properties differ considerably from the classical continuum regime. Results showed that unbacked micro-capillary plates can achieve absorption values greater than 0.7 up to 7 kHz with an absorption plateau above 0.85 up to 4 kHz under normal incidence. Dependence of their performance to the backing load is analyzed. They could be used as low-frequency noise dissipation devices with applications as calibrated anechoic terminations.

ACKNOWLEDGMENTS

This study was funded in Spain by the Ministerio de Economía y Competitividad project TRA2017- 87978-R, AEI/FEDER, UE, and the mobility program ILINK+2018. It was supported in France by the ANR VIRTECH (ANR-17-CE10-0012-01). The authors would like to thank J. Kergomard, Emeritus Director of Research at CNRS-LMA, for fruitful discussions, Dr. P. Ecker from GIDS GmbH for kindly borrowing us one of the MCPs and Dr. L. Sabatier, Research Engineer at CNRSLMA, for X-ray imaging the MCPs.

GAA

proyecto/s relacionado/s

  • Absorción acústica cuasi-perfecta en banda ancha con metamateriales bio-inspirados para los sistemas de transporte terrestres y aéreos
    Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016, Programa Estatal de I+D+i Orientada a los Retos de la Sociedad (AEI), Fondos Feder
Departamento de Acústica y Evaluación No Destructiva (DAEND)
  • GAA: Grupo de Acústica ambiental
  • G CARMA: Grupo de Caracterización de materiales mediante evaluación no destructiva
  • ULAB: Ultrasonidos para el análisis de líquidos y bioingeniería
Departamento de Tecnologías de la Información y Las Comunicaciones (DTIC)
  • GiCP: Grupo de investigación en Ciberseguridad y Protección de la Privacidad
  • GICSI: Grupo de investigación en Criptología y Seguridad de la Información
    • LCQE: Laboratorio de Comunicaciones Cuánticas
  • PSUM: Grupo de Procesamiento de Señal en sistemas Ultrasónicos Multicanal
Departamento de Sensores y Sistemas Ultrasónicos (DSSU)
  • GSTU: Grupo de Sistemas y tecnologías ultrasónicas
  • NoySI: Grupo de Nanosensores y Sistemas Inteligentes
  • RESULT: Resonadores ultrasónicos para cavitación y micromanipulación
  • SENSAVAN: Grupo de Tecnología de Sensores Avanzados
  • QE: Electrónica Cuántica
Laboratorios
  • Laboratorio de Acústica
  • Laboratorio de Metrología Ultrasónica Médica (LMUM)
  • Laboratorio de Comunicaciones Cuánticas
  • Laboratory for International Collaboration in Advanced Biophotonics Imaging

Instituto de Tecnologías Físicas y de la Información Leonardo Torres Quevedo  - ITEFI
C/ Serrano, 144. 28006 - Madrid • Tel.: (+34) 91 561 88 06  Contacto  •  Intranet
EDIFICIO PARCIALMENTE ACCESIBLE POR PERSONAS CON MOVILIDAD REDUCIDA