Pasar al contenido principal

Main navigation

  • Sobre El ITEFI
  • Investigación
  • Formación y empleo
  • OpenLab
  • Servicios científico técnicos
  • Directorio

Broadband sound attenuation and absorption by duct silencers based on the acoustic black hole effect: Simulations and experiments

Acoustic black holes
Duct acoustics
sound attenuation
visco-thermal dissipation
causal-based optimization
Teresa Bravo, Cédric Maury
Journal of Sound and Vibration, Volume 561, 2023, 117825
https://doi.org/10.1016/j.jsv.2023.117825

Wideband reduction of both sound reflection and transmission using compact non-intrusive liners remains a challenging issue for duct noise control applications. This work focuses on the acoustical performance limitations of cylindrical silencers made up of annular ring resonators with axial gradient of their cavity depths. It is shown from theoretical, numerical and experimental studies that a sub-wavelength silencer with optimized acoustic black hole (ABH) properties can be designed through which incident sound waves are retarded and fully dissipated within the activated resonant cavities. Such ABH-type silencer requires a suitable interplay between the wall impedance axial variations and the visco-thermal losses within the cavities. Key parameters that influence this balance are the axial growth of cavity depths and the wall porosity. A causal-based criterion has been proposed that maximizes the total integrated dissipated power, thereby leading to the optimal value of the wall porosity and to the ultimate bandwidth-to-length ratio that can be achieved by an ABH-type silencer given a target dissipation value. A space-frequency region has been numerically and experimentally identified over which the ABH effect is prominent. The causal-based criterion has been extended to account for the low-frequency ultimate performance of ABH silencers with coiled cavities and for the effects of a low-speed grazing flow.

This work is part of the project TED2021-130103B-I00, funded by MCIN/AEI/10.13039/501100011033 and the European Union “NextGenerationEU”/PRTR. It has also received support from the French government under the France 2030 investment plan, as part of the Initiative d'Excellence d'Aix-Marseille Université - A*MIDEX (AMX-19-IET-010).

GAA

proyecto/s relacionado/s

  • ECOFAN: Revestimientos aeroacústicos mejorados para el diseño de ventiladores de sistemas de refrigeración y de climatización
    Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023
Departamento de Acústica y Evaluación No Destructiva (DAEND)
  • GAA: Grupo de Acústica ambiental
  • G CARMA: Grupo de Caracterización de materiales mediante evaluación no destructiva
  • ULAB: Ultrasonidos para el análisis de líquidos y bioingeniería
Departamento de Tecnologías de la Información y Las Comunicaciones (DTIC)
  • GiCP: Grupo de investigación en Ciberseguridad y Protección de la Privacidad
  • GICSI: Grupo de investigación en Criptología y Seguridad de la Información
    • LCQE: Laboratorio de Comunicaciones Cuánticas
  • PSUM: Grupo de Procesamiento de Señal en sistemas Ultrasónicos Multicanal
Departamento de Sensores y Sistemas Ultrasónicos (DSSU)
  • GSTU: Grupo de Sistemas y tecnologías ultrasónicas
  • NoySI: Grupo de Nanosensores y Sistemas Inteligentes
  • RESULT: Resonadores ultrasónicos para cavitación y micromanipulación
  • SENSAVAN: Grupo de Tecnología de Sensores Avanzados
  • QE: Electrónica Cuántica
Laboratorios
  • Laboratorio de Acústica
  • Laboratorio de Metrología Ultrasónica Médica (LMUM)
  • Laboratorio de Comunicaciones Cuánticas
  • Laboratory for International Collaboration in Advanced Biophotonics Imaging

Instituto de Tecnologías Físicas y de la Información Leonardo Torres Quevedo  - ITEFI
C/ Serrano, 144. 28006 - Madrid • Tel.: (+34) 91 561 88 06  Contacto  •  Intranet
EDIFICIO PARCIALMENTE ACCESIBLE POR PERSONAS CON MOVILIDAD REDUCIDA