Pasar al contenido principal

Main navigation

  • Sobre El ITEFI
  • Investigación
  • Formación y empleo
  • OpenLab
  • Servicios científico técnicos
  • Directorio

Causally-guided acoustic optimization of single-layer rigidly-backed micro-perforated partitions: Theory

microperforated panels
optimization
sound absorption
causality
Teresa Bravo, Cédric Maury,
Journal of Sound and Vibration, Volume 520, 2022, 116634
https://doi.org/10.1016/j.jsv.2021.116634

This theoretical study adapts results obtained in electromagnetism on the optimal performance of radar slab absorbers to the field of acoustics to enhance the broadband dissipation of single-layer rigidly-backed micro-perforated absorbers (MPAs) under normal incidence. Based on the causality principle, an integral identity is derived. It shows that the MPA ultimate wideband performance, that integrates contributions of the intensity reflection coefficient over all the positive wavelengths, is upper bounded by the absorber cavity depth. A sensitivity analysis led to the proposal of a causal-based optimization criterion in order to find optimal MPAs that achieve maximum wideband performance while reaching perfect absorption at their Helmholtz resonance frequency. This simple criterion maximizes the sensitivity of the total reflected intensity with respect to the micro-perforated panel constitutive parameters. It can be readily implemented using numerical quadrature and optimization solvers. It is shown to be a suitable alternative to maximization of the total absorption and inverse-frequency weighted absorption for single-layer MPA broadband optimization.

Acknowledgments

This work has been funded by The Ministerio de Economía y Competitividad in Spain, project TRA2017-87978-R, AEI/FEDER, UE, and the mobility program ILINK+2018. It was supported in France by the ANR VIRTECH (ANR-17-CE10-0012-01).

GAA

proyecto/s relacionado/s

  • Absorción acústica cuasi-perfecta en banda ancha con metamateriales bio-inspirados para los sistemas de transporte terrestres y aéreos
    Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016, Programa Estatal de I+D+i Orientada a los Retos de la Sociedad (AEI), Fondos Feder
Departamento de Acústica y Evaluación No Destructiva (DAEND)
  • GAA: Grupo de Acústica ambiental
  • G CARMA: Grupo de Caracterización de materiales mediante evaluación no destructiva
  • ULAB: Ultrasonidos para el análisis de líquidos y bioingeniería
Departamento de Tecnologías de la Información y Las Comunicaciones (DTIC)
  • GiCP: Grupo de investigación en Ciberseguridad y Protección de la Privacidad
  • GICSI: Grupo de investigación en Criptología y Seguridad de la Información
    • LCQE: Laboratorio de Comunicaciones Cuánticas
  • PSUM: Grupo de Procesamiento de Señal en sistemas Ultrasónicos Multicanal
Departamento de Sensores y Sistemas Ultrasónicos (DSSU)
  • GSTU: Grupo de Sistemas y tecnologías ultrasónicas
  • NoySI: Grupo de Nanosensores y Sistemas Inteligentes
  • RESULT: Resonadores ultrasónicos para cavitación y micromanipulación
  • SENSAVAN: Grupo de Tecnología de Sensores Avanzados
  • QE: Electrónica Cuántica
Laboratorios
  • Laboratorio de Acústica
  • Laboratorio de Metrología Ultrasónica Médica (LMUM)
  • Laboratorio de Comunicaciones Cuánticas
  • Laboratory for International Collaboration in Advanced Biophotonics Imaging

Instituto de Tecnologías Físicas y de la Información Leonardo Torres Quevedo  - ITEFI
C/ Serrano, 144. 28006 - Madrid • Tel.: (+34) 91 561 88 06  Contacto  •  Intranet
EDIFICIO PARCIALMENTE ACCESIBLE POR PERSONAS CON MOVILIDAD REDUCIDA