Computational Analysis of Interleaving PN-Sequences with Different Polynomials.

Cardell, S.D.; Requena, V.; Fúster-Sabater, A.
Cryptography 2022, 6, 21

Binary PN-sequences generated by LFSRs exhibit good statistical properties; however, due to their intrinsic linearity, they are not suitable for cryptographic applications. In order to break such a linearity, several approaches can be implemented. For example, one can interleave several PN-sequences to increase the linear complexity. In this work, we present a deep randomness study of the resultant sequences of interleaving binary PN-sequences coming from different characteristic polynomials with the same degree. We analyze the period and the linear complexity, as well as many other important cryptographic properties of such sequences.


This work was supported in part by the Spanish State Research Agency (AEI) of the Ministry of Science and Innovation (MICINN), project P2QProMeTe (PID2020-112586RB-I00/AEI/ 10.13039/501100011033). It was also supported by Comunidad de Madrid (Spain) under project CYNAMON (P2018/TCS-4566), co-funded by FSE and European Union FEDER funds. The work of the second author was partially supported by Spanish grant VIGROB-287 of the University of Alicante.