Pasar al contenido principal

Main navigation

  • Sobre El ITEFI
  • Investigación
  • Formación y empleo
  • OpenLab
  • Servicios científico técnicos
  • Directorio

Deep-Learning-Driven Full-Waveform Inversion for Ultrasound Breast Imaging

full-waveform inversion
breast imaging
ultrasound tomography
deep learning
Thomas Robins , Jorge Camacho, Oscar Calderon Agudo , Joaquin L. Herraiz and Lluís Guasch
Sensors 2021, 21(13), 4570
https://doi.org/10.3390/s21134570

Ultrasound breast imaging is a promising alternative to conventional mammography because it does not expose women to harmful ionising radiation and it can successfully image dense breast tissue. However, conventional ultrasound imaging only provides morphological information with limited diagnostic value. Ultrasound computed tomography (USCT) uses energy in both transmission and reflection when imaging the breast to provide more diagnostically relevant quantitative tissue properties, but it is often based on time-of-flight tomography or similar ray approximations of the wave equation, resulting in reconstructed images with low resolution. Full-waveform inversion (FWI) is based on a more accurate approximation of wave-propagation phenomena and can consequently produce very high resolution images using frequencies below 1 megahertz. These low frequencies, however, are not available in most USCT acquisition systems, as they use transducers with central frequencies well above those required in FWI. To circumvent this problem, we designed, trained, and implemented a two-dimensional convolutional neural network to artificially generate missing low frequencies in USCT data. Our results show that FWI reconstructions using experiment data after the application of the proposed method successfully converged, showing good agreement with X-ray CT and reflection ultrasound-tomography images.

Acknowledgments. We acknowledge M.D. Vicente Martinez de Vega (Hospital Universitario Quiron Salud, Madrid) for his help with the CT acquisition of the phantom. We also acknowledge Patricia Martinez and Gabriela Moreno for their help in the initial processing of multimodal images.

GSTU
Departamento de Acústica y Evaluación No Destructiva (DAEND)
  • GAA: Grupo de Acústica ambiental
  • G CARMA: Grupo de Caracterización de materiales mediante evaluación no destructiva
  • ULAB: Ultrasonidos para el análisis de líquidos y bioingeniería
Departamento de Tecnologías de la Información y Las Comunicaciones (DTIC)
  • GiCP: Grupo de investigación en Ciberseguridad y Protección de la Privacidad
  • GICSI: Grupo de investigación en Criptología y Seguridad de la Información
    • LCQE: Laboratorio de Comunicaciones Cuánticas
  • PSUM: Grupo de Procesamiento de Señal en sistemas Ultrasónicos Multicanal
Departamento de Sensores y Sistemas Ultrasónicos (DSSU)
  • GSTU: Grupo de Sistemas y tecnologías ultrasónicas
  • NoySI: Grupo de Nanosensores y Sistemas Inteligentes
  • RESULT: Resonadores ultrasónicos para cavitación y micromanipulación
  • SENSAVAN: Grupo de Tecnología de Sensores Avanzados
  • QE: Electrónica Cuántica
Laboratorios
  • Laboratorio de Acústica
  • Laboratorio de Metrología Ultrasónica Médica (LMUM)
  • Laboratorio de Comunicaciones Cuánticas
  • Laboratory for International Collaboration in Advanced Biophotonics Imaging

Instituto de Tecnologías Físicas y de la Información Leonardo Torres Quevedo  - ITEFI
C/ Serrano, 144. 28006 - Madrid • Tel.: (+34) 91 561 88 06  Contacto  •  Intranet
EDIFICIO PARCIALMENTE ACCESIBLE POR PERSONAS CON MOVILIDAD REDUCIDA