Pasar al contenido principal

Main navigation

  • Sobre El ITEFI
  • Investigación
  • Formación y empleo
  • OpenLab
  • Servicios científico técnicos
  • Directorio

From Micro-Perforates to Micro-Capillary Absorbers: Analysis of Their Broadband Absorption Performance through Modeling and Experiments

sound absorption
micro-perforated panels
micro-capillaries
anechoic termination
Maury, C., Bravo, T.
Applied Sciences (Switzerland), 2023, 13(19), 10844
https://doi.org/10.3390/app131910844

A challenging issue is currently the design of non-fibrous ultra-thin acoustic absorbers that are able to provide broadband performance in demanding environments. The objective of this study is to compare using simulations and measurements the broadband absorption performance of highly porous micro-capillary plates (MCPs) to that of micro-perforated panels (MPPs) under normal incidence while considering unbacked or backed configurations. MCPs are unusual materials used for sound absorption with micron-sized channels and a high perforation ratio. Impedance-based modeling and Kundt tube experiments show that MCPs with suitable channel diameters have a pure constant resistance that outperforms the acoustic efficiency of MPP absorbers. Unbacked MCPs exhibit a controllable amount of high absorption that can exceed 0.8 over more than five octaves starting from 80 Hz, thereby achieving a highly sub-wavelength absorber. MCPs still provide broadband high absorption when backed by a rigid cavity. Their bandwidth-to-thickness ratio increases toward its causal limit when the cavity depth decreases. A parallel MCP resonant absorber partly backed by closed and open cavities is proposed. Such MCP-based absorbers could serve as short anechoic terminations for the characterization of acoustic materials at low frequencies.

 

This work is part of the project TED2021-130103B-I00, funded by MCIN/AEI/10.13039/501100011033 and the European Union “NextGenerationEU”/PRTR. It also received support from the French government under the France 2030 investment plan, as part of the Initiative d’Excellence d’Aix-Marseille Université-A*MIDEX (AMX-19-IET-010).

GAA

proyecto/s relacionado/s

  • ECOFAN: Revestimientos aeroacústicos mejorados para el diseño de ventiladores de sistemas de refrigeración y de climatización
    Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023
Departamento de Acústica y Evaluación No Destructiva (DAEND)
  • GAA: Grupo de Acústica ambiental
  • G CARMA: Grupo de Caracterización de materiales mediante evaluación no destructiva
  • ULAB: Ultrasonidos para el análisis de líquidos y bioingeniería
Departamento de Tecnologías de la Información y Las Comunicaciones (DTIC)
  • GiCP: Grupo de investigación en Ciberseguridad y Protección de la Privacidad
  • GICSI: Grupo de investigación en Criptología y Seguridad de la Información
    • LCQE: Laboratorio de Comunicaciones Cuánticas
  • PSUM: Grupo de Procesamiento de Señal en sistemas Ultrasónicos Multicanal
Departamento de Sensores y Sistemas Ultrasónicos (DSSU)
  • GSTU: Grupo de Sistemas y tecnologías ultrasónicas
  • NoySI: Grupo de Nanosensores y Sistemas Inteligentes
  • RESULT: Resonadores ultrasónicos para cavitación y micromanipulación
  • SENSAVAN: Grupo de Tecnología de Sensores Avanzados
  • QE: Electrónica Cuántica
Laboratorios
  • Laboratorio de Acústica
  • Laboratorio de Metrología Ultrasónica Médica (LMUM)
  • Laboratorio de Comunicaciones Cuánticas
  • Laboratory for International Collaboration in Advanced Biophotonics Imaging

Instituto de Tecnologías Físicas y de la Información Leonardo Torres Quevedo  - ITEFI
C/ Serrano, 144. 28006 - Madrid • Tel.: (+34) 91 561 88 06  Contacto  •  Intranet
EDIFICIO PARCIALMENTE ACCESIBLE POR PERSONAS CON MOVILIDAD REDUCIDA