In the past few years, the use of several medical devices is increasing. This paper will pay attention to a device developed to get measures of the temperature of diabetic foot. These wearables usually do not have cryptographic protocols to guarantee data security. This study analyzes the existing security in these devices, and simulate malware propagation taking into account the vulnerabilities and lack of security in these highly-constrained interconnected devices. A simulation of malware spreading in a network made by 10 and 15 individuals with 6 and 34 sensors each one, respectively, is included in this study. To avoid such attacks, a lightweight cryptographic protocol could be a satisfactory solution. Considering the quick development of quantum computers, several current cryptographic protocols have been compromised.
Funding
This work was supported by the Spanish State Research Agency (AEI) of the Ministry of Science and Innovation (MICINN), project P2QProMeTe (PID2020-112586RB-I00/AEI/10.13039/501100011033), co-funded by the European Regional Development Fund (ERDF, EU).
Acknowledgments
Luis Hernández-Álvarez would like to thank CSIC Project 202050E304 (CASDiM).