Pasar al contenido principal

Main navigation

  • Sobre El ITEFI
  • Investigación
  • Formación y empleo
  • OpenLab
  • Servicios científico técnicos
  • Directorio

Wideband sound absorption and transmission through micro-capillary plates: Modelling and experimental validation

micro-capillary plates
sound absorption
anechoic termination
Cédric Maury, Teresa Bravo
Journal of Sound and Vibration, Volume 478, 2020, 115356
https://doi.org/10.1016/j.jsv.2020.115356

The current work presents theoretical and experimental studies that investigate sound propagation through micro-capillary plates (MCP) under a general plane wave excitation and in the no-flow case. MCPs are characterized by micrometric channels radius with Knudsen number greater than 0.001 so that a slip-flow model has been derived for their viscous transfer impedance. It is found that the slip-flow model should be used instead of the continuum model to predict the transfer impedance of MCPs with channels radii lower than 2 μm as well as their absorption coefficient under near-grazing incident excitations. Otherwise, both approaches provide similar results, as confirmed by comparison with finite element simulations. Due to their high porosity, MCPs provide minute reactance and constant resistance that can be tailored to achieve target absorption over a broad frequency range. Plane wave impedance tube experiments have shown that a near-optimal MCP termination can provide a low frequency flat absorption spectrum that stays above 0.7 up to a Helmholtz number of 1.84. Measurements on rigidly-backed MCPs have led to ultra-wideband absorption with a half-bandwidth spanning up to 12 octaves around the absorber Helmholtz resonance. Expressions have been derived to find the optimal channels radius that maximize the MCPs dissipation under general incidence angle and assuming anechoic or rigid backing. The sensitivity of the MCPs optimal transfer resistance to their load impedance has been examined. It provides a design chart to find the MCP optimal parameters that achieve specific broadband absorption value under general incidence and practical load conditions.

Keywords: Micro-capillary plates, Sound absorption, Anechoic termination

Acknowledgments

This study was funded in Spain by the Ministerio de Economía y Competitividad project TRA2017-87978-R, AEI/FEDER, UE, and the mobility program ILINK+2018. It was supported in France by the ANR VIRTECH (ANR-17-CE10-0012-01). The authors would like to thank J. Kergomard, Emeritus Director of Research at CNRS-LMA, for fruitful discussions, Dr. P. Ecker from GIDS GmbH for kindly borrowing us one of the MCPs and Dr. L. Sabatier, Research Engineer at CNRS-LMA, for X-ray imaging the MCPs.

GAA

proyecto/s relacionado/s

  • Absorción acústica cuasi-perfecta en banda ancha con metamateriales bio-inspirados para los sistemas de transporte terrestres y aéreos
    Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016, Programa Estatal de I+D+i Orientada a los Retos de la Sociedad (AEI), Fondos Feder
Departamento de Acústica y Evaluación No Destructiva (DAEND)
  • GAA: Grupo de Acústica ambiental
  • G CARMA: Grupo de Caracterización de materiales mediante evaluación no destructiva
  • ULAB: Ultrasonidos para el análisis de líquidos y bioingeniería
Departamento de Tecnologías de la Información y Las Comunicaciones (DTIC)
  • GiCP: Grupo de investigación en Ciberseguridad y Protección de la Privacidad
  • GICSI: Grupo de investigación en Criptología y Seguridad de la Información
    • LCQE: Laboratorio de Comunicaciones Cuánticas
  • PSUM: Grupo de Procesamiento de Señal en sistemas Ultrasónicos Multicanal
Departamento de Sensores y Sistemas Ultrasónicos (DSSU)
  • GSTU: Grupo de Sistemas y tecnologías ultrasónicas
  • NoySI: Grupo de Nanosensores y Sistemas Inteligentes
  • RESULT: Resonadores ultrasónicos para cavitación y micromanipulación
  • SENSAVAN: Grupo de Tecnología de Sensores Avanzados
  • QE: Electrónica Cuántica
Laboratorios
  • Laboratorio de Acústica
  • Laboratorio de Metrología Ultrasónica Médica (LMUM)
  • Laboratorio de Comunicaciones Cuánticas
  • Laboratory for International Collaboration in Advanced Biophotonics Imaging

Instituto de Tecnologías Físicas y de la Información Leonardo Torres Quevedo  - ITEFI
C/ Serrano, 144. 28006 - Madrid • Tel.: (+34) 91 561 88 06  Contacto  •  Intranet
EDIFICIO PARCIALMENTE ACCESIBLE POR PERSONAS CON MOVILIDAD REDUCIDA