Pasar al contenido principal

Main navigation

  • Sobre El ITEFI
  • Investigación
  • Formación y empleo
  • OpenLab
  • Servicios científico técnicos
  • Directorio

Gas sensors using magnetic nanoparticles and spin waves

J.D. Aguilera, P. de la Presa, P. Marín, M.C. Horrillo, D. Matatagui
The 3rd International Conference on Nanomaterials Applied to Life Sciences 2022 (NALS 2022)
Del 27 al 29 de abril de 2022, Santander, España

 

We built an innovative sensor based on the interaction between nanostructures and gases using spin waves to detect the induced magnetic changes. The device is sensitive to low gas concentration of acetone, ammonia, carbon monoxide and benzene. The presence of these substances in human breath is related to different metabolic mechanisms, so they could be used to diagnose complex diseases like cancer [1]. When traces of these gases diluted in air pass through zinc ferrite nanoparticles, which are contained in a 2 mm diameter teflon tube, the magnetic properties of the nanostructures change. This change is detected by means of spin waves: due to the known dependence of their propagation on the external field [2], their frequency will shift as the nanoparticles’ properties change. These excitations propagate along the surface of a 2 μm thick epitaxial film made of YIG (Yttrium Iron Garnet), a ferrimagnetic insulator with a quite narrow magnetic resonance line. The frequency of the spin waves is detected by means of an oscillator circuit connected to a frequency counter. Before manufacturing the device, the computer simulations and calculations described in [3] were replicated in order to optimize the design of the device.

The results show the possibility of developing new inexpensive, reusable, contactless magnetic sensors employing spin waves as mechanism of transduction. The device was exposed to the target gas for one minute, then purged with pure air for nine minutes. The sensitivity of the equipment is under 50 ppm of the reducing gases acetone, ammonia, carbon monoxide and benzene. Besides, the magnetic nanoparticles are reusable few minutes after each measurement, although the response decreases gradually (maybe longer purge times would prevent this phenomenon) until it gets stable when carbon monoxide or benzene are introduced. Considering the low concentrations of the target gases, the outcome of this novel experiment is rather promising.

Response (Hz) of the sensor to different concentrations of the four target gases.

 

Acknowledgments

The authors acknowledge the projects RTI2018-095856-B-C21 and RTI2018-095856-B-C22.

References

[1] W. Miekisch, J. Schubert, and G. F. E. Noeldge-Schomburg, Clin.Chim. Acta, 2004, 347, 25–39.

[2] J. R. Fragoso and D. Matatagui, Bicapas de guías magnónicas para el procesamiento de señales, Universidad Nacional Autonoma de Mexico, 2016.

[3] M. Pozo-Gómez, J. Aguilera-Martín, P. de la Presa, C. Cruz, P. Marín, D. Matatagui, and M. Horrillo, Modeling and simulation of a magnonic gas sensor to detect diseases in human breath, in 2021 13th Spanish Conference on Electron Devices (CDE), pp. 125-128, 2021.

 

Presentación de póster
SENSAVAN

proyecto/s relacionado/s

  • Desarrollo de materiales magnéticos y sensores para aplicaciones biomédicas
    Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016, Programa Estatal de I+D+i Orientada a los Retos de la Sociedad (AEI), Fondos Feder
Departamento de Acústica y Evaluación No Destructiva (DAEND)
  • GAA: Grupo de Acústica ambiental
  • G CARMA: Grupo de Caracterización de materiales mediante evaluación no destructiva
  • ULAB: Ultrasonidos para el análisis de líquidos y bioingeniería
Departamento de Tecnologías de la Información y Las Comunicaciones (DTIC)
  • GiCP: Grupo de investigación en Ciberseguridad y Protección de la Privacidad
  • GICSI: Grupo de investigación en Criptología y Seguridad de la Información
    • LCQE: Laboratorio de Comunicaciones Cuánticas
  • PSUM: Grupo de Procesamiento de Señal en sistemas Ultrasónicos Multicanal
Departamento de Sensores y Sistemas Ultrasónicos (DSSU)
  • GSTU: Grupo de Sistemas y tecnologías ultrasónicas
  • NoySI: Grupo de Nanosensores y Sistemas Inteligentes
  • RESULT: Resonadores ultrasónicos para cavitación y micromanipulación
  • SENSAVAN: Grupo de Tecnología de Sensores Avanzados
  • QE: Electrónica Cuántica
Laboratorios
  • Laboratorio de Acústica
  • Laboratorio de Metrología Ultrasónica Médica (LMUM)
  • Laboratorio de Comunicaciones Cuánticas
  • Laboratory for International Collaboration in Advanced Biophotonics Imaging

Instituto de Tecnologías Físicas y de la Información Leonardo Torres Quevedo  - ITEFI
C/ Serrano, 144. 28006 - Madrid • Tel.: (+34) 91 561 88 06  Contacto  •  Intranet
EDIFICIO PARCIALMENTE ACCESIBLE POR PERSONAS CON MOVILIDAD REDUCIDA