Skip to main content

Main navigation

  • About ITEFI
  • Research
  • Formación y empleo
  • OpenLab
  • Servicios científico técnicos
  • Staff Directory

G-CARMA

Ultrasound Transmission Tomography for Detecting and Measuring Cylindrical Objects Embedded in Concrete

ultrasound
tomography
concrete
inspection system
Dalmay Lluveras Núñez, Miguel Ángel Molero-Armenta, Miguel Ángel García Izquierdo, Margarita González Hernández and José Javier Anaya Velayos
Sensors 17 (5) 1085, 16 pages
https://doi.org/10.3390/s17051085

This study explores the feasibility of using transmission tomographic images based on attenuation measures in transmission to detect and estimate the most common materials that are embedded in concrete, reinforcements and natural and artificial voids. A limited set of concrete specimens have been made in which cylindrical objects such as bars/tubes of steel, PVC and aluminium have been embedded to analyse the effect of size and material. The methodology and scope of this study is presented and numerical simulations are carried out to optimize the emitter-receiver configuration and to understand the complex physical propagation phenomena of ultrasonic signals that travel through concrete with embedded inclusions. Experimental tomographic images are obtained by using an ultrasonic tomographic system, which has the advantage of needing only two ultrasonic transducers. Both the software simulation tool and the tomographic inspection system are developed by the authors. The obtained results show that PVC tubes and steel bars of diameters higher than 19 mm and embedded in cylindrical specimens, can be detected and their sizes estimated using segmented tomographic images.

Acknowledgments

The Spanish Economy and Competitiveness Ministry supported this research under grant numbers TEC2012-38402-C04-03 and BIA2016-77992-R (AEI/FEDER, UE). We acknowledge the support of the publication fee by the CSIC Open Access Publication Support Initiative through its Unit of Information Resources for Research (URICI).

G-CARMA

proyecto/s relacionado/s

  • Generation of tomographic imaging for nondestructive evaluation of construction materials. IMATCONS
    Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016, Programa Estatal de I+D+i Orientada a los Retos de la Sociedad (AEI), Fondos Feder
  • Characterization of reinforced concrete with high content of fibers by ultrasonic imaging (HORFIUS)
    Plan Nacional I+D+i 2008-2011
Acoustics and Non Destructive Evaluation (DAEND)
  • Environmental Acoustics (GAA)
  • G Carma: Materials Characterization by Non Destructive Evaluation
  • ULAB, Ultrasounds for Liquid Analysis and Bioengineering
Information and Communication Technologies (TIC)
  • Cybersecurity and Privacy Protection Research Group (GiCP)
  • Research group on Cryptology and Information Security (GiCSI)
    • Quantum Communications Laboratory (LCQE)
  • Multichannel Ultrasonic Signal Processing Group (MUSP)
Sensors and Ultrasonic Systems (DSSU)
  • Ultrasonic Systems and Technologies (USTG)
  • Nanosensors and Smart Systems (NoySi)
  • Ultrasonic Resonators for cavitation and micromanipulation (RESULT)
  • Advanced Sensor Technology (SENSAVAN)
  • Quantum Electronics (QE)
Laboratorios
  • Laboratorio de Acústica
  • Laboratorio de Metrología Ultrasónica Médica (LMUM)
  • Laboratorio de Comunicaciones Cuánticas
  • Laboratory for International Collaboration in Advanced Biophotonics Imaging

Instituto de Tecnologías Físicas y de la Información Leonardo Torres Quevedo  - ITEFI
C/ Serrano, 144. 28006 - Madrid • Tel.: (+34) 91 561 88 06  Contacto  •  Intranet
EDIFICIO PARCIALMENTE ACCESIBLE POR PERSONAS CON MOVILIDAD REDUCIDA