Skip to main content

Main navigation

  • About ITEFI
  • Research
  • Formación y empleo
  • OpenLab
  • Servicios científico técnicos
  • Staff Directory

Design of piezoelectric piston-like piezoelectric transducers based on a phononic crystal

ultrasound
piezoelectric transducers
phonic crystals
physiotherapy
Ronda, S.; Montero de Espinosa, F.
Advances in Applied Ceramics, vol .117, pp. 177-181, n.º 3
http://dx.doi.org/10.1080/17436753.2017.1391974

Many clinical surveys have evaluated the use of ultrasound in physiotherapy treatments, the question of its effectiveness still being under discussion possibly because of the randomized energy density applied, which depends on the acoustic pressure beam of the transducers. In this work, a phononic crystal made of holes in solid materials is the basis for the design of a transducer with a piston-like vibration pattern where the radial modes are stopped, thus favoring the thickness vibration and resulting in a better mechanical vibration amplitude and acoustic efficiency. Finite element simulations have been made of the standard transducer and the proposed design; then demonstrator devices have been manufactured and tested so experimental results could be compared to the calculated ones. The transducers with this phononic structure show an efficient piston-like emission. The electrical impedance, the emitting surface vibration pattern and the acoustic diffraction field have been calculated and experimentally measured.

Funding

This work was supported by Ministerio de Economía y Competitividad (DPI2016-80254-R).

ULAB

proyecto/s relacionado/s

  • Medium intensity pulsed focused ultrasound for rehabilitation and physiotherapy Ultrasonic piezoelectric power transducers for physiotherapy
    Programa Estatal de I+D+i Orientada a los Retos de la Sociedad (AEI)
Acoustics and Non Destructive Evaluation (DAEND)
  • Environmental Acoustics (GAA)
  • G Carma: Materials Characterization by Non Destructive Evaluation
  • ULAB, Ultrasounds for Liquid Analysis and Bioengineering
Information and Communication Technologies (TIC)
  • Cybersecurity and Privacy Protection Research Group (GiCP)
  • Research group on Cryptology and Information Security (GiCSI)
    • Quantum Communications Laboratory (LCQE)
  • Multichannel Ultrasonic Signal Processing Group (MUSP)
Sensors and Ultrasonic Systems (DSSU)
  • Ultrasonic Systems and Technologies (USTG)
  • Nanosensors and Smart Systems (NoySi)
  • Ultrasonic Resonators for cavitation and micromanipulation (RESULT)
  • Advanced Sensor Technology (SENSAVAN)
  • Quantum Electronics (QE)
Laboratorios
  • Laboratorio de Acústica
  • Laboratorio de Metrología Ultrasónica Médica (LMUM)
  • Laboratorio de Comunicaciones Cuánticas
  • Laboratory for International Collaboration in Advanced Biophotonics Imaging

Instituto de Tecnologías Físicas y de la Información Leonardo Torres Quevedo  - ITEFI
C/ Serrano, 144. 28006 - Madrid • Tel.: (+34) 91 561 88 06  Contacto  •  Intranet
EDIFICIO PARCIALMENTE ACCESIBLE POR PERSONAS CON MOVILIDAD REDUCIDA