Skip to main content

Main navigation

  • About ITEFI
  • Research
  • Formación y empleo
  • OpenLab
  • Servicios científico técnicos
  • Staff Directory

System and method for applying physiotherapeutic focused ultrasound

ultrasound
physiotherapy
piezocomposites
array transducer
parallel robot
G.Portilla Tuesta, F.Montero de Espinosa
Ultrasonics Volume 121, April 2022, 106693
https://doi.org/10.1016/j.ultras.2022.106693

Despite many years of clinical use of ultrasound, the results of different reviews of controlled trials on the efficacy of ultrasound physical therapy for different musculoskeletal injuries continue to question its efficacy.

However, “in vitro” experiments with well-controlled cell cultures and experiments with animal models show positive results. The question is whether the commercial systems used by physiotherapists can deliver the required ultrasonic dose to the exact location on the body.

The object of this work is the design, realization and testing of a new concept of ultrasound system for Physiotherapy capable of focusing the ultrasound beam to apply the required ultrasonic energy dose at the point targeted by the physiotherapist. The system is designed for non-thermal effects Physiotherapy. The system consists of conceptually new piezocomposite arrays with a metallic delay line, multi-pulser electronics for emission focusing, parallel robots for mechanical steering and positioning of the array transducers, and linear and angular encoders to allow the physiotherapist to direct the focus to the target.

The multi-pulser and parallel robot angulation are controlled by the computer, using a graphical interface software.

 

Acknowledgements. The authors acknowledge support from the Spanish Research Agency- Ministry of Sciencie and Innovation-, grant number DPI2016-80254-R.

ULAB

proyecto/s relacionado/s

  • Medium intensity pulsed focused ultrasound for rehabilitation and physiotherapy Ultrasonic piezoelectric power transducers for physiotherapy
    Programa Estatal de I+D+i Orientada a los Retos de la Sociedad (AEI)
Acoustics and Non Destructive Evaluation (DAEND)
  • Environmental Acoustics (GAA)
  • G Carma: Materials Characterization by Non Destructive Evaluation
  • ULAB, Ultrasounds for Liquid Analysis and Bioengineering
Information and Communication Technologies (TIC)
  • Cybersecurity and Privacy Protection Research Group (GiCP)
  • Research group on Cryptology and Information Security (GiCSI)
    • Quantum Communications Laboratory (LCQE)
  • Multichannel Ultrasonic Signal Processing Group (MUSP)
Sensors and Ultrasonic Systems (DSSU)
  • Ultrasonic Systems and Technologies (USTG)
  • Nanosensors and Smart Systems (NoySi)
  • Ultrasonic Resonators for cavitation and micromanipulation (RESULT)
  • Advanced Sensor Technology (SENSAVAN)
  • Quantum Electronics (QE)
Laboratorios
  • Laboratorio de Acústica
  • Laboratorio de Metrología Ultrasónica Médica (LMUM)
  • Laboratorio de Comunicaciones Cuánticas
  • Laboratory for International Collaboration in Advanced Biophotonics Imaging

Instituto de Tecnologías Físicas y de la Información Leonardo Torres Quevedo  - ITEFI
C/ Serrano, 144. 28006 - Madrid • Tel.: (+34) 91 561 88 06  Contacto  •  Intranet
EDIFICIO PARCIALMENTE ACCESIBLE POR PERSONAS CON MOVILIDAD REDUCIDA