Skip to main content

Main navigation

  • About ITEFI
  • Research
  • Formación y empleo
  • OpenLab
  • Servicios científico técnicos
  • Staff Directory

Total Focusing Method With Virtual Sources in the Presence of Unknown Geometry Interfaces

auto-focused virtual imaging - AVSI
beamforming
total focusing method - TFM
J.F. Cruza, J. Camacho
IEEE Trans. on Ultrasonics, Ferroelectrics and Frequency Control, vol. 63-10, 2016, pp. 1581 – 1592
http://dx.doi.org/10.1109/TUFFC.2016.2593439

Auto-focused virtual source imaging (AVSI) has been recently presented as an alternative method for synthetic aperture focusing through arbitrarily shaped interfaces with arrays. This paper extends the AVSI concept to the case of the total focusing method (TFM-AVSI) using several virtual receivers for each virtual source. This approach overcomes the known contrast limitation of AVSI, while preserving the advantage of performing synthetic focusing in the second medium only [no time-of-flight (TOF) calculations through the interface]. In contrast, equipment with more active channels must be used to digitalize the signals received by all the array elements after each focused emission. When compared with the conventional TFM, the proposed method reduces the processing complexity of the most time consuming task: TOF calculation in the presence of interfaces. This improvement could lead to more efficient real-time implementations of the TFM in non-destructive testing applications where water immersion or flexible wedges are used. In this paper, the mathematical formulation for the new method is given, accounting for the surface slope and the array angular sensitivity. Its performance is evaluated by numerical simulation, experimentally and compared with AVSI and the conventional TFM. It was found that the TFM-AVSI achieves the same resolution and contrast as that of the TFM, although it shows a wider blind zone below the interface due to focusing with normal incidence.

GSTU
Acoustics and Non Destructive Evaluation (DAEND)
  • Environmental Acoustics (GAA)
  • G Carma: Materials Characterization by Non Destructive Evaluation
  • ULAB, Ultrasounds for Liquid Analysis and Bioengineering
Information and Communication Technologies (TIC)
  • Cybersecurity and Privacy Protection Research Group (GiCP)
  • Research group on Cryptology and Information Security (GiCSI)
    • Quantum Communications Laboratory (LCQE)
  • Multichannel Ultrasonic Signal Processing Group (MUSP)
Sensors and Ultrasonic Systems (DSSU)
  • Ultrasonic Systems and Technologies (USTG)
  • Nanosensors and Smart Systems (NoySi)
  • Ultrasonic Resonators for cavitation and micromanipulation (RESULT)
  • Advanced Sensor Technology (SENSAVAN)
  • Quantum Electronics (QE)
Laboratorios
  • Laboratorio de Acústica
  • Laboratorio de Metrología Ultrasónica Médica (LMUM)
  • Laboratorio de Comunicaciones Cuánticas
  • Laboratory for International Collaboration in Advanced Biophotonics Imaging

Instituto de Tecnologías Físicas y de la Información Leonardo Torres Quevedo  - ITEFI
C/ Serrano, 144. 28006 - Madrid • Tel.: (+34) 91 561 88 06  Contacto  •  Intranet
EDIFICIO PARCIALMENTE ACCESIBLE POR PERSONAS CON MOVILIDAD REDUCIDA