Skip to main content

Main navigation

  • About ITEFI
  • Research
  • Formación y empleo
  • OpenLab
  • Servicios científico técnicos
  • Staff Directory

On the yielding behaviour in magnetorheology using ultrasounds, shear and normal stresses, and optical microscopy

ultrasound
magnetorheological fluid
magnetorheology
yield stress
normal stress
static yield stress
dynamic yield stress
Jaime Rodriguez-López, Pedro Castro, Luis Elvira, Francisco Montero de Espinosa, Javier Ramírez and Juan de Vicente
Journal of Physics D: Applied Physics, vol. 48 (46), 2015
https://doi.org/10.1088/0022-3727/48/46/465503

The yielding behaviour of magnetorheological fluids has been investigated by videomicroscopy, ultrasonic and rheometry techniques simultaneously. Particularly, the effect of different factors such as, the magnetic field strength, particle size, surface chemistry of the particles, particle concentration and carrier fluid viscosity has been studied. Special attention has been paid to correlate the yielding information obtained by acoustical, optical and mechanical techniques. As a general trend, independently of the particular field strength and suspension formulation, the steady shear flow curve exhibits three well differentiated regions. In the first region, at small stresses, field-induced structures remain quasistatic and all magnitudes remain constant. For larger stresses the number of aggregates decreases but their size increases. This is identified with the onset of flow, and corresponds to the classical static yield stress and a decrease in time-of-flight and normal stresses. For even larger stress values, the suspensions fully flow. This stress value corresponds to the classical dynamic yield stress and is associated to a minimum in the time-of-flight and normal stresses.

Acknowledgments

This work was supported by MAT 2013-44429-R, DPI 2013-46915-C2-1-R and PLIN-2015-051 projects (Spain) and by Junta de Andalucía P10-RNM-6630 and P11-FQM-7074 projects (Spain).

ULAB

proyecto/s relacionado/s

  • Detección, control y actuación sobre biofilms bacterianos con transductores y materiales piezoeléctricos
    Programa Estatal de I+D+i Orientada a los Retos de la Sociedad (AEI), Fondos Feder
Acoustics and Non Destructive Evaluation (DAEND)
  • Environmental Acoustics (GAA)
  • G Carma: Materials Characterization by Non Destructive Evaluation
  • ULAB, Ultrasounds for Liquid Analysis and Bioengineering
Information and Communication Technologies (TIC)
  • Cybersecurity and Privacy Protection Research Group (GiCP)
  • Research group on Cryptology and Information Security (GiCSI)
    • Quantum Communications Laboratory (LCQE)
  • Multichannel Ultrasonic Signal Processing Group (MUSP)
Sensors and Ultrasonic Systems (DSSU)
  • Ultrasonic Systems and Technologies (USTG)
  • Nanosensors and Smart Systems (NoySi)
  • Ultrasonic Resonators for cavitation and micromanipulation (RESULT)
  • Advanced Sensor Technology (SENSAVAN)
  • Quantum Electronics (QE)
Laboratorios
  • Laboratorio de Acústica
  • Laboratorio de Metrología Ultrasónica Médica (LMUM)
  • Laboratorio de Comunicaciones Cuánticas
  • Laboratory for International Collaboration in Advanced Biophotonics Imaging

Instituto de Tecnologías Físicas y de la Información Leonardo Torres Quevedo  - ITEFI
C/ Serrano, 144. 28006 - Madrid • Tel.: (+34) 91 561 88 06  Contacto  •  Intranet
EDIFICIO PARCIALMENTE ACCESIBLE POR PERSONAS CON MOVILIDAD REDUCIDA