Skip to main content

Main navigation

  • About ITEFI
  • Research
  • Formación y empleo
  • OpenLab
  • Servicios científico técnicos
  • Staff Directory

EEG Data for User Authentication with Multi-Class and One-Class Classifiers

artificial intelligence
biological sensors
electroencephalogram
machine learning
multi-class classifiers
one-class classifiers
L. Hernández-Álvarez, S. Caputo, L. Mucchi, and L. Hernández Encinas
Actas VII Jornadas Nacionales de Investigación en Ciberseguridad (JNIC'2022), 205-208. J. M. de Fuentes, L. González, J. C. Sancho, A. Ayerbe and M. L. Escalante (Eds.), Bilbao, Junio 27--29, 2022
ISBN: 978-84-88734-13-6

Nowadays, the development of user authentication protocols is a hot topic, due to the importance of authentication mechanisms in online services as bank applications, online shop- ping or personal and professional document requests. Biometric information is commonly combined with Artificial Intelligence (Machine Learning and Deep Learning) methods to develop these systems. Nevertheless, they are usually based on Multi–Class classifiers, which need the impostor’s information in order to be trained. The access to the impostor’s information is an unrealistic assumption and, therefore, in this ongoing research we propose the construction of more realistic user authentication models using One–Class classifiers, and compare their performance with Multi–Class classifiers. Moreover, we also pretend to evaluate the contribution of different sensor locations and brain waves, and define the best model for a secure and a usable user authentication system.

 

ACKNOWLEDGEMENTS

This work was supported in part by the Spanish State Research Agency (AEI) of the Ministry of Science and Inno- vation (MCIN), project P2QProMeTe (PID2020-112586RB- I00/AEI/10.13039/501100011033); in part by Comunidad de Madrid (Spain) through Project CYNAMON, grant No. P2018/TCS-4566-CM, both co-funded by the European Re- gional Development Fund (ESF, FEDER and ERDF, EU); in part by the European Union’s Horizon 2020 Research and Innovation Program under Grant 872752 and under Grant 101017141. L.H.A. would like to thank CSIC Project CAS- DiM for its support.

 

Puede descargar las actas haciendo clic aquí https://2022.jnic.es/Actas_JNIC_2022_v11.pdf
GiCSI

proyecto/s relacionado/s

  • Técnicas y mecanismos de Ciberseguridad para la Autenticación basados en información Sensorial de Dispositivos Móviles (CASDiM)
    Proyectos intramurales (CSIC)
  • Protocolos, Mecanismos y Tecnologías Pre y Postcuánticas para la Ciberseguridad y la Privacidad. P2QProMeTe
    Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020
Acoustics and Non Destructive Evaluation (DAEND)
  • Environmental Acoustics (GAA)
  • G Carma: Materials Characterization by Non Destructive Evaluation
  • ULAB, Ultrasounds for Liquid Analysis and Bioengineering
Information and Communication Technologies (TIC)
  • Cybersecurity and Privacy Protection Research Group (GiCP)
  • Research group on Cryptology and Information Security (GiCSI)
    • Quantum Communications Laboratory (LCQE)
  • Multichannel Ultrasonic Signal Processing Group (MUSP)
Sensors and Ultrasonic Systems (DSSU)
  • Ultrasonic Systems and Technologies (USTG)
  • Nanosensors and Smart Systems (NoySi)
  • Ultrasonic Resonators for cavitation and micromanipulation (RESULT)
  • Advanced Sensor Technology (SENSAVAN)
  • Quantum Electronics (QE)
Laboratorios
  • Laboratorio de Acústica
  • Laboratorio de Metrología Ultrasónica Médica (LMUM)
  • Laboratorio de Comunicaciones Cuánticas
  • Laboratory for International Collaboration in Advanced Biophotonics Imaging

Instituto de Tecnologías Físicas y de la Información Leonardo Torres Quevedo  - ITEFI
C/ Serrano, 144. 28006 - Madrid • Tel.: (+34) 91 561 88 06  Contacto  •  Intranet
EDIFICIO PARCIALMENTE ACCESIBLE POR PERSONAS CON MOVILIDAD REDUCIDA