Skip to main content

Main navigation

  • About ITEFI
  • Research
  • Formación y empleo
  • OpenLab
  • Servicios científico técnicos
  • Staff Directory

Modeling the effect of steering mirrors on polarization for free-space quantum key distribution

Free-space
quantum key distribution
Polarization
Steering mirror
quantum bit error rate
satellite-to-earth communications
Pablo Arteaga-Díaz, Natalia Denisenko, Veronica Fernandez
Optik, 169434, 2022
https://doi.org/10.1016/j.ijleo.2022.169434

In polarization-encoding free-space Quantum Key Distribution (QKD), unwanted variations in the states of polarization may cause errors, leading to an increase in the quantum bit error rate (QBER), and a reduction of the Secure Key Rate (SKR). Optical elements that reflect or transmit the quantum signal at the transmitter and/or receiver are the main cause of polarization variations in the quantum states. Although most of these optical elements affect polarization in a constant manner, requiring relatively simple compensation techniques, mobile elements such as steering mirrors, cause time-varying polarization variations that are more complex to characterize and correct. In this work, we simulate the effect of steering mirrors’ typical values of angular rotation on the QBER. In particular, we show that, for most cases, an active correction of the polarization reference frame and a passive correction of the phase shift between the electric field components is sufficient to obtain QBER values due to the steering mirrors below 0.2%. This avoids the need of a fully active correction strategy, which increases the complexity, weight, and cost of the implementation. Furthermore, we present different design considerations to further reduce the steering mirrors’ contribution to the QBER (less than 0.05%).

Funding: This work had the support of the Spanish National Research Council (CSIC), project 202050E232, by the Spanish State Research Agency (AEI), project PID2020-118178RB-C22/AEI / 10.13039/501100011033, and by the Community of Madrid (Spain) under the CYNAMON project (P2018/TCS-4566), co-financed with European Social Fund and EU FEDER funds. We also acknowledge the support of CSIC’s PTI Platform in Quantum Technologies QTEP PTI-001.

GiCSI

proyecto/s relacionado/s

  • Criptografía cuántica basada en interferencia cuántica para comunicaciones seguras
    Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020
  • Tecnologías Robustas de Distribución Cuántica de Claves para la Nueva Generación de Redes Wireless
    Proyectos intramurales (CSIC)
Acoustics and Non Destructive Evaluation (DAEND)
  • Environmental Acoustics (GAA)
  • G Carma: Materials Characterization by Non Destructive Evaluation
  • ULAB, Ultrasounds for Liquid Analysis and Bioengineering
Information and Communication Technologies (TIC)
  • Cybersecurity and Privacy Protection Research Group (GiCP)
  • Research group on Cryptology and Information Security (GiCSI)
    • Quantum Communications Laboratory (LCQE)
  • Multichannel Ultrasonic Signal Processing Group (MUSP)
Sensors and Ultrasonic Systems (DSSU)
  • Ultrasonic Systems and Technologies (USTG)
  • Nanosensors and Smart Systems (NoySi)
  • Ultrasonic Resonators for cavitation and micromanipulation (RESULT)
  • Advanced Sensor Technology (SENSAVAN)
  • Quantum Electronics (QE)
Laboratorios
  • Laboratorio de Acústica
  • Laboratorio de Metrología Ultrasónica Médica (LMUM)
  • Laboratorio de Comunicaciones Cuánticas
  • Laboratory for International Collaboration in Advanced Biophotonics Imaging

Instituto de Tecnologías Físicas y de la Información Leonardo Torres Quevedo  - ITEFI
C/ Serrano, 144. 28006 - Madrid • Tel.: (+34) 91 561 88 06  Contacto  •  Intranet
EDIFICIO PARCIALMENTE ACCESIBLE POR PERSONAS CON MOVILIDAD REDUCIDA