Pasar al contenido principal

Main navigation

  • Sobre El ITEFI
  • Investigación
  • Formación y empleo
  • OpenLab
  • Servicios científico técnicos
  • Directorio

Frequency Filtering with a Magnonic Crystal Based on Nanometer-Thick Yttrium Iron Garnet Films

spin waves
magnonics
magnetic nanostructures
frequency filtering
Brillouin light-scattering BLS spectroscopy
Hugo Merbouche, Martin Collet, Michael Evelt, Vladislav E. Demidov, José Luis Prieto, Manuel Muñoz, Jamal Ben Youssef, Grégoire de Loubens, Olivier Klein, Stéphane Xavier, Olivier D’Allivy Kelly, Paolo Bortolotti, Vincent Cros, Abdelmadjid Anane and Sergej O. Demokritov
ACS Appl. Nano Mater. 2021, 4, 1, 121–128
https://doi.org/10.1021/acsanm.0c02382

Magnonics rely on the wave nature of the magnetic excitations to process information, an approach that is common to many fields such as photonics, phononics, and plasmonics. Nevertheless, magnons, the quanta of spin-wave excitations, have the unique advantage to be at frequencies that are lying between a few GHz to tens of GHz, that is, in the technologically relevant radio-frequency bands for 4G and 5G telecommunications. Furthermore, their typical wavelengths are compatible with on-chip integration. Here, we demonstrate radio-frequency signal filtering by a micron-scale magnonic crystal (MC) based on a nanopatterned 20 nm-thick film of yttrium iron garnet with a minimum feature size of 100 nm where the Bragg vector is set to be kB = 2.1 μm–1. We map the intensity and the phase of spin waves (SWs) propagating in the periodic magnetic structure using phase-resolved microfocus Brillouin light-scattering spectroscopy. Based on these maps, we obtain the SW dispersion and the attenuation characteristics. Efficient filtering is obtained with a frequency selectivity of 20 MHz at an operating frequency of 4.9 GHz. The results are analyzed by performing time- and frequency-resolved full-scale micromagnetic simulations of the MC that reproduce quantitatively the complexity of the harmonic response across the magnonic band gap and allow the identification of the relevant SW-quantized modes, thereby providing an in-depth insight into the physics of SW propagation in periodically modulated nanoscale structures.

ACKNOWLEDGMENTS

This work was supported in part by the Deutsche Forschungsgemeinschaft, and the ANR Maestro (ANR-18- CE24-0021). M.M acknowledges the financial support from the project MAT2017-87072-C4-4-P. M.C. acknowledges DGA for financial support. We acknowledge C. Carrétéro, E. Jacquet, and R. Lebourgeois for their contribution to sample preparation.

QE

proyecto/s relacionado/s

  • Estudios RF de heteroestructuras para aplicación en dispositivos magnónicos
    Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016
Departamento de Acústica y Evaluación No Destructiva (DAEND)
  • GAA: Grupo de Acústica ambiental
  • G CARMA: Grupo de Caracterización de materiales mediante evaluación no destructiva
  • ULAB: Ultrasonidos para el análisis de líquidos y bioingeniería
Departamento de Tecnologías de la Información y Las Comunicaciones (DTIC)
  • GiCP: Grupo de investigación en Ciberseguridad y Protección de la Privacidad
  • GICSI: Grupo de investigación en Criptología y Seguridad de la Información
    • LCQE: Laboratorio de Comunicaciones Cuánticas
  • PSUM: Grupo de Procesamiento de Señal en sistemas Ultrasónicos Multicanal
Departamento de Sensores y Sistemas Ultrasónicos (DSSU)
  • GSTU: Grupo de Sistemas y tecnologías ultrasónicas
  • NoySI: Grupo de Nanosensores y Sistemas Inteligentes
  • RESULT: Resonadores ultrasónicos para cavitación y micromanipulación
  • SENSAVAN: Grupo de Tecnología de Sensores Avanzados
  • QE: Electrónica Cuántica
Laboratorios
  • Laboratorio de Acústica
  • Laboratorio de Metrología Ultrasónica Médica (LMUM)
  • Laboratorio de Comunicaciones Cuánticas
  • Laboratory for International Collaboration in Advanced Biophotonics Imaging

Instituto de Tecnologías Físicas y de la Información Leonardo Torres Quevedo  - ITEFI
C/ Serrano, 144. 28006 - Madrid • Tel.: (+34) 91 561 88 06  Contacto  •  Intranet
EDIFICIO PARCIALMENTE ACCESIBLE POR PERSONAS CON MOVILIDAD REDUCIDA