L. Hernández-Álvarez, S. Caputo, L. Mucchi, and L. Hernández Encinas
VII Jornadas Nacionales de Investigación en Ciberseguridad
Del 27 al 29 de junio de 2022, Bilbao, España.
Nowadays, the development of user authentication protocols is a hot topic, due to the importance of authentication mechanisms in online services as bank applications, online shop- ping or personal and professional document requests. Biometric information is commonly combined with Artificial Intelligence (Machine Learning and Deep Learning) methods to develop these systems. Nevertheless, they are usually based on Multi–Class classifiers, which need the impostor’s information in order to be trained. The access to the impostor’s information is an unrealistic assumption and, therefore, in this ongoing research we propose the construction of more realistic user authentication models using One–Class classifiers, and compare their performance with Multi–Class classifiers. Moreover, we also pretend to evaluate the contribution of different sensor locations and brain waves, and define the best model for a secure and a usable user authentication system.